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CHAPTER V. EXTENDING THE DEFINITE INTEGRAL

8§ V.1. DEFINITE INTEGRALSWITH PARAMETERS

We consider that the integral calculus for the functions of one red
variable is known. Here we include the indefinite integrals (also called
primitives or anti-derivatives) as well as the definite integrals. Similarly,
we consider that the basic methods of calculating (exactly and
approximately) integrals are known.

The purpose of this paragraph is to study an extension of the notion of
definite integral in the sense that beyond the variable of integration there
exists another variable also called parameter.

1.1. Definition. Let usconsider aninterval AcCR, | =[a,b] c R and

f:AxI—>R.If for each x e A (x is called parameter), functiont — f(x, t)
iIsintegrable on [a, b], thenwe say that F : A — R, defined by

b
FO) = | f(x, tyt

iIsadefinite integral with parameter (between fixed limits a and b).
More generaly, if instead of a, b we consider two functions
¢, v : A — [a b] suchthat p(x) < y(x) for al x € A, and the function
t > f(x, t) isintegrable on the interval [o(X), w(X)] for each x € A, then the
function
v (X)
G = [ f(x t)t
o(X)
is called definite integral with parameter x (between variable limits).
The integrals with variable limits may be reduced to integrals with
constant limits by changing the variable of integration:
1.2. Lemma. In the conditions of the above definition, we have:

G(X) = [w(X) — o(X] I f(x, () + 6[y(X) — (x)])d 6 .
Proof. In the integral G(x) we make the change t = ¢(X) + 0 [w(X) — o(X)],
for which j—; = y(X) — o(X). &

Relative to F and G we'll study the properties concerning continuity,
derivability and integrability in respect to the parameter.
1.3. Theorem. If f: Ax| — Riscontinuouson Ax|,thenF: A — Ris
continuous on A.
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Proof. If X, € A, then either x, €A, or X, is an end-point of A. In any case
there exists 1> 0 such that

Ky ={(% 1) eR*: | Xx—x|< M, X €A te[a, b]}
IS a compact part of A x I. Since f is continuous on A x I, it will be
uniformly continuous on K, , i.e. for any € > O there exists & > 0 such that

g
fox, t') — f(x", t") | <
[10¢,1) =10, €)1 <
whenever (X, t'), (X', t") € K, and d((X, t'), (X", t")) <.
Consequently, for all x e Afor which | Xx—Xp|<min {n,d } we have

b
|FO) = FOo) [ < [ 1H(x, ) = f(xo, Bt <

&
2(b—a)
which means that F is continuous at X, . &>

(b-a) <e,

1.4. Corollary. If thefunction f: Axl — R iscontinuouson Ax I, and
¢, v : A —> [a, b] arecontinuouson A, then G : A — R iscontinuous on A.
Proof. Functiong: Ax [0, 1] — R, defined by

g(x, 6) = (X, o) + OLw(X) — e(X)]),
which was used in lemma 1.2, is continuous on A x [0, 1], hence we can
apply theorem 1.3 and lemma 1.2. &

1.5. Theorem. Let A < R be an arbitrary interval, | = [a, b] < R, and let
usnotef: Axl — R. If fiscontinuouson A x |, and it has a continuous

b
partia derivative Z—f then F € C,'(A), and F'(X) = _[ Z—f(x, t)dt.
X X
a
Proof. We have to show that at each x, € A, there exists
b
jim FOIZFO0) 1 (et
X% X=X - OX
For this purpose we consider the following helpful function
f(x,t)— f(Xg,t)
h(x, t) = X=X
ﬂ( t) If X=X
ox X0 0
On the hypothesis it is clear that h is continuous on A x |, hence we can
use theorem 1.3 for the function

if X #Xg

b b
Hw=jhm0m:jf“g:g“”m=H2:ZMX
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On this way, the equality H(xp) = lim H(X) shows that F is derivable at

X—>X,

Xo, and

b
Fo0) = [ S (et

The continuity of F' isa consequence of the continuity of Z—f , by virtue
X
of the same theorem 1.3. &

1.6. Corollary. If, in addition to the hypothesis of the above theorem, we
have ¢, y € C.'(A), then G € C.'(A) and the equality
v (X) of
GM= | F (x, Dt + f(x, y(x)) w'(X) — f(x, (x)) ¢'(x)
o(X)
holds at any x € A.
Proof. Let us consider a new function L : Ax | x| — R, expressed by

V
L(x,u,v) = _[ f(x, t)dt . According to the above theorem, for fixed u and v
u

\Y
we have % (xuv) =] g_f (x,t)dt . On the other hand, the general properties
X X

of a primitive lead to Z_L(X’ u, v) = —f(x, u) and %L(x, u, v) = f(x, v).
u

Because all these partia derivatives are continuous, L is differentiable on
A x| x I. Applying the rule of deriving a composite function in the case of
G(X) = L(x, o(X), w(X)), we obtain the announced formula. The continuity
of G' follows by using theorem 1.3. &

1.7. Theorem. If f: Ax| - Riscontinuouson Axl ,thenF: A - Ris
integrable on any compact [a, B] < A, and

B bl B
[F(gdx=| [ | f(x,t)dx]dt.
a ajla
Proof. According to theorem 1.3, F is continuous on [a, B], hence it is also
integrable on thisinterval. It iswell known that the function
y

D(y) = [ F(x)dx

o
isaprimitiveof F on [a, B]. We will show that
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bl y

o(y) = | [ | f(x,t)dx]dt.
o , .

For this purpose let usnote U(y, t) = | f(x, t)dxand ¥(y) = | U(y, t)dt.

a

Then, %J(y, t) = f(y, t), hence according to theorem 1.5, we have

b
Y'(y) = _[ f(y,t)dt. Consequently, the equalities \V'(y) = F(y) = ®'(y) hold
a

aanyy e [a, B], hence ®(y) — ¥ (y) = ¢, where cis a constant. Because
®d(a) = ¥ (o) = 0, weobtainc = 0, i.e. ® =Y. In particular, ®() = ¥ (B)
express the required equality. &

1.8. Corollary. If,in addition to the conditions in the above theorem,
the functions o, v : A—[a, b] are continuouson A, then

p 17 B
[G(xax= | { | g(x,@)dx]d@

a Ola
where g(x, 6) = f(x, 9(x) + O[y(X) — ¢(X) 1) [w(X) — @(x) ] (asin corollary 4).
1
Proof. According to Lemma 1.2, we have G(x) = I g(x,0)da, so it remains
0
to use theorem 1.7. &

1.9. Remark. The formulas established in the above theorems and their
corollaries (especialy that which refers to derivation and integration) are
frequently useful in practice for calculating integrals (see the problems at
the end of the paragraph). In particular, theorem 1.7 gives the conditions on
which we can change the order in an iterated integrdl, i.e.

?ﬁ f (x,t)dt}dx = T[? f (X,t)dx]dt .

ala alo
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PROBLEMSS8V.1

wl?2
1. Calculate [In(x*-sin®t)dt , wherex> 1.
0

wl2
Hint. Denoting the integra by F(x), we obtain F'(x) = I %dt.
0 X°—sin“t
. e t . T
Using the substitution tg — = u, weobtain F'(X) = , and so
2 VX% -1

F(X) = zIn(x+ + X2 —1) + c. Inorder to find c, we write

c=FX) —zIn(x+ \/XZ—]—):
wl2 in2 /
= f{lnxzﬂn[l—smztﬂdt_ﬁln(x’“ x* ~1)=
X

0
/2 . 2 V2
= | |n[1—s'” tJclt—mn”—"l.

2
0 X X

Taking here x — oo, it followsc = — zln 2.

1
2. Caculatel = j f(x)dx, where f: [0, 1] — R hasthevalues
0
xP —x®
f)=1 Inx
0 if x=0,x=1

if xe(0,1),0<a<p

B
Hint. Notice that f(x) = Ixtdt at any xe[0, 1), and at the end point 1, there
(04

exists lim f(xX) = g —a, so only at this point f differs form a continuous
x—1

1

A Al B+1
function on[0, 1]. Consequently | = | [ [x'dt]dx = [| [x'dx |dt =In===".
04

9 2o a+1l

sin x )
I e dt
3. Caculate lim-9

x—0 19X

j e dt
0
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Hint. Thisisa g indetermination; in order to use L'Hospital rule we need

the derivatives relative to x, which is a parameter in the upper limits of
integrals, so the limit reduces to

- sinx ,
SN X cosx + f % dt
Iinz) tgf =1.
X—>
e 9 cog™ x+j(t)extdt
0
T
4. Calculatel = J‘L,Where0<|b|< a, and deduce the values of
0a+bcosx
T T T
| = IL,Kz SBX__dxandL= jln(a+bcosx)dx.
o a+bcosx O(a+bcosx)

Hint. The substitution tg 5 = tisnot possiblein | because [0, n) is carried

into [0, «). Since theintegral is continuous on R, we have
. dx
[ = lim

>z at bcosx’

and this last integral can be calculated using the mentioned substitution.

More exactly,

g

L dx 2 dt 2 b, |
_[—:2 > = arctg| .[——tg—
jatbcosx o atb+t(a-b) +aZ-p? +b 2

hencel = ——"—_ ToobtanK , we derive | relativeto b. Finadly, %zl.
a? - b? oa

arctgx dx by deriving I(y) = I arctgxy dx, y>0.

xv1-— X2 oxXVv1- X2

nt. Substituti on X =cos 0 giveS
1 wl2

|' =
V) '([(1+x 2)W1-x? I 1+y 00529

Because the substitution tg 8 = ¢ carries [0, E) into [0, «), and the

5. Caculatel = j

substitution tg % =t leadsto a complicated calculation, we consider
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|
I'(y)= lim 2dt9
I—>%Ol+y
If we replace tg6=tinthislastintegral then we obtain

| g tgl
J.1+y cos? J1+y +t2 4/1+y 1/1+y2'

Consequently I'(y) = , hence I(y) = Eln(y + 41+ y2) + C.

cos2 0

arctg

N

1+y

Because |(0) = 0t followsthat ¢ = 0, hence | = I(1) = %In(1+ J2).

1 1
ArCGX_ 4y using the formula 2719 — | dy

J(;xﬁ X

Hint. Changi ng the order of integration we obtain
1 1[1
dy dx
| = dx = dy
J 0V1-x? U 1+x° ] £[£ 1+ x2y?)V1-x? ]

so the problem reducesto 1'(y) from problem 5.

6. Cdculatel =

ol+ x2y2 '

T

2 .
7. Calculate K= jlna+bs'”x- X asb>o.

a—bsinx sinx

Hint. Using the formula — -|na+be”X:2abj 5 2dy2 o we
sinx a-bsinx pa” —by“sin“x
obtain
" K |
2|1 112
dx
K= dx = 2ab dy.
gh 2 b2y sin? x} J(; J(;az—bzyzsinzx
. _ _
Since j 5 dez -7 it follows that
0@ —by“sin“x  2a,a®-b?y?
1
K= nbjL:narcsinE.
51/a? —b2y? a
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1
8. Showthat I,.(a)= _—ll'n(a), where 1(a) = J'
2na 0(x +a )

a # 0. Using this result, calculatej—
O(1+x)

Hint. Derive l,(a) relativetoa.

1
9. Use Theorem 1.7 to evaluate | = [ f (x)dx, where

0

xB — x@

f(X)=7 Inx
0 Jif x=0o0r x=1

sin(inx) ,if x=0and x=1

and x>0, g>0.
Hint. Introduce a parameter t and remark that

1B
= I{J‘xt dt]-sin(lnx)dx .
OlLa

Change the order of integration to obtain

_ﬂlt.l o |t = A
_ngxsm(nx) x]t—im
a-p

1+ (a+1)(B+1)

a

Theresultis | = arctg



8V.2. IMPROPER INTEGRALS

In the construction of the definite integral, noted f:f (t)dt, we have used

two conditions which allow usto write the integral sums, namely:
(i) aandb arefinite (i.e. different from + «);
(i1) fisbounded on [a, b], whereit is defined.

There are still many practical problems, which lead to integrals of
functions not satisfying these conditions. Even definite integrals reduce
sometimes to such "more general" integrals, as for example when changing

the variables by tg g =1, the interval [0, n] is carried into [0, «].

The aim of this paragraph is to extend the notion of integral in the case
when these conditions are no longer satisfied.
2.1. Definition. Thecasewhen b = oo. If f: [a, ) — R isintegrable on

B
[a, B] for all p>a, andthereexistsL = |lim If(t)dt,thenwemaysaythat
a

L0

fisimproperly integrable on [a, o), and L is the improper integral of f on
o0 p
[a, «). In this case we note [ f(t)dt = lim [ f(t)dt, and we say that the
Lo
a a

improper integral is convergent.
Similarly we discuss the case whena = — .
The case when f is unbounded at b. Let f : [a, b) —» R be unbounded in

the neighborhood of b, in the sense that for arbitrary 6 >0 and M > O there
existst € (b — 6, b) such that f (t) > M. If fisintegrable on [a, B ] for all

B
a < B <b, and there exists L = Iimbjf(t)dt, then we say that f is
p—b?

improperly integrable on [a, b), and L is called improper integral of f on

b B
[a, b). If L exists, we note [ f(t)dt = |imb [ f(Hdt, and we say that the
L—
a a
improper integral is convergent.
We similarly treat the functions which are unbounded at a .

2.2. Remarks. a) In practice we often deal with combinations of the above
simple situations, as for example

+o0 not. B

j f(t)dt = jf(t)dt: lim jf(t)dt,

0 ]R (X—)—Ooa
B—+o0
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b B

[ f(tydt=lim [ f(t)dt, wherea< a <p <b.
a—a

a ﬁ_)ba

b
The integral I f (t)dt can be improper because f is unbounded at some
a
point ¢ € (a, b), in which case we define

b o b
[f®dt = lim [ f(t)dt+ lim [ f(t)dt.
a—C p—cC

a a<c & B>c P
b) From the geometrical point of view, considering improper integrals may
be interpreted as measuring areas of unbounded subsets of the plane. The
existence of the above considered limits shows that we can speak of the
area of an unbounded set, at least for sub-graphs of some real functions.
c) In spite of the diversity of types of improper integrals, there is asimple,
but essential common feature, namely that the integration is realized on
non-compact sets. In fact, a compact set in R is bounded and closed, hence

[@, ©), (-, b], (—w,+) are non-compact because they are not bounded,
while [a, b), (a, b], etc. are non-compact because of non-closeness.
Obvioudly, other combinations like (a, «), (-«, ¢) u(c, b], etc. are
possible. Because any improper integral is defined by a limiting process,
when proving some property of such integrals it is sufficient to consider
only one of the possible cases.

2.3. Examples. a) Theintegral 1)) = | d—:

t
1

when 1(A) = (A — 1)}, and divergent for A < 1. In fact, according to the

(A € R) isconvergent for 4 > 1,

B
above definition, 1() = lim [t~*dt, where

B0y
B L p if Azl
[t dt= 1 P n T
1 Inp if =1
Finally, it remains to remember that
0 if A>1
lim p=2 =11 if A=1
oo .
0 if A <1

10
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1
b) The integral [(n) = I ?—: (w> 0) isconvergent for x < 1, whenit

0
equals I(w) = (1 - )™, andit isdivergent for u > 1.
FiguresV.2.1. a), respectively b), suggest how to interpret [(A) and I(n) as
areas of some sub-graphs (hatched portions).

A A

b)

a) Fig.V.2.1

The usua properties of the definite integrals also hold for improper
integrals, namely:
2.4. Proposition. a8 The improper integral is a linear functional on the
space of al improperly integrable functions, i.e. if f, g : [a, b) > R are

improperly integrable on [a, b), and A, p € R, then Af + pg is improperly
integrable on [a, b) and we have:

b b b
[ (f + pg)()dt = A[ £ ()t + 1] g(t)ct.
a a a
b) The improper integral is additive relative to the intervdl, i.e.
b o b
[ fdt = [ f(dt + [ f(R)at.
a a C
¢) The improper integral is dependent on the order of the interval, namely
b a
[ftydt =— [ f(t)dt.
a b

2.5. Theorem. (Leibniz-Newton formula) Let f : [a, b) — R be (properly)

integrable on any compact [a, B Jincluded in [a, b), and F be the primitive
of f on [a, b). Then a necessary and sufficient condition for f to be
improperly integrable on [a, b) isto exist the finite limit of F at b. In this
case we have:

11
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b
_Lf(t)dt = gl_erF(B)—F(a).

2.6. Theorem. (Integration by parts) If f, g satisfy the conditions:
(i) f,geCh(lab])
(i1) there existsandisfinite Iirrg)(fg)(x)

X—>

x<b
b
(i) [ f()g'(t)dt isconvergent

b
then I f'(t)g(t)dt isconvergent too, and we have
a

b b
J ' ®gdt = lim(f9)(x) - f(@)g(@ - | f(H)g'M)ct.

x<b a

2.7. Theorem. (Changing the variable) Let f : [a, b) — R be continuous on
[a,b), and let ¢ : [a, b') — [a, b) be of class C'y([a, b']), such that ¢(&) = a

b
and elirrg @) =b. If [f(t)dt isconvergent, thenthe integral
m
0<b' a

"
[ f(@(6))¢' (6)d6
Is also convergent, and we hgve
b’ b
| He©@)e'(0)do = | f (D).

The above properties (especially theorems 2.5 — 2.7) are useful in the
cases when primitives are available. If the improper integral can't be
calculated using the primitivesit is still important to study the convergence.
For developing such a study we have several tests of convergence, as
follows:

2.8. Theorem. (Cauchy's genera test) Let f : [a, b) — R be (properly)
b

integrable on any [& B] < [& b). Then J'f(t)dt Is convergent iff for every
a

e > O thereexists o > 0 such that b', b" (b -9, b) implies <g.

.
[ ftydt
0

12
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X
Proof. Let F : [a, b) — R be defined by F(x) = _[f(t)dt. Then f is
a

improperly integrable on [a, b) if F has afinite limit a b, which means that

for every ¢ >0 wecanfind 6 >0 suchthat b',b" € (b-5,b) implies
b

[F(b') - F(b")| < e. It remains to remark that F(b') - F(b") = - [ f (t)dt. <>
;

The above Cauchy's general test is useful in realizing analogies with
absolutely convergent series as follows:

b
2.9. Definition. If f : [a, b) — R, then we say that the integral J'f(t)dt IS
a

b
absolutely convergent iff j | f(t) |dt is convergent, i.e. || is improperly
a
integrable on [a, b).
2.10. Remark. In what concerns the integrability of f and ||, the improper
integral differs from the definite integral: while “f integrable” in the proper
sense implies |f| integrable”, this is not valid for improper integrals. In
fact, there exist functions, which are improperly integrable without being
absolutely integrable. For example, let f: [0, ©) — R be afunction of

_n\n-1 .
vauesf(0) = 1,and f(t) = (b if te (-1, n],wheren e N.This
n

function isimproperly integrable on [0, «), and
[fdt=Y ()" =in2,
0 n=1 n

but it is not absolutely integrable since

[7f @ldt= Y 2 =co .
n=1"

The next proposition shows that the opposite implication holds for the
improper integrals:
2.11. Proposition. Every absolutely convergent integral is convergent.
Proof. Using the Cauchy's general test, the hypothesis means that for every
¢ > 0 there exists 6 > 0 such that for any B, B" (b — 9, b) we have

B
[lfdt] < .

p
Because f isproperly integrable on any compact from [a, b), and

13
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B B B
[tmdi< [lf@d] = | [|f)d |
B B B
it followsthat f isimproperly integrable on [a, b). &

2.12. Theorem. (The comparisontest) Let f, g: [a, b) — R be such that:
1) f, g are properly integrable on any compact from [a, b)
2) fordlt e [a b) wehave|f(t) | < g(t)
b
3) [g(t)dt isconvergent.

a
b

Then | f (t)dt is absolutely convergent.

a

B B

Proof. Because |[|f(t)dt< [g(t)dt holds for al B, p"e(b-3,b),
B B

B < B", we can apply the Cauchy's general test. >

2.13. Remark. a) Besides its utility in establishing convergence, the above
theorem can be used as a divergence test. In particular, if O < f(t) < g(t) for

b b
alte [a b),and [ f(t)dt isdivergent, then [ g(t)dt isdivergent too.
a a

b) In practice, we realize comparison with functions like in example 2.3,

.e. L on [a, ), on [a, b), q'on[a, »), etc. The comparison

th (b-t)*
with such functions leads to particular forms of Theorem 2.12, which are
very useful in practice. We mention some of them in the following
theorems 2.14 - 2.18.

2.14. Theorem — special form # | of the comparison test. (Test based on
limt*f(t)) Let f: [a, o) —>R" be integrable on any compact from [a, «)

t—o0

and let usnote ¢ = limt*f(t).
t—owo

1) IfA>1and0 < ¢ <oo,then [ f(t)dt isconvergent
a

2) Ifi<land0< (< oo, then [ f(t)dt isdivergent.
a

Proof. If ¢ € (0, «), then for every € > 0 thereexists 6 > 0 such that t > o
impliesO< /—e<t'f(t)< ¢ +¢, i.e

14
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K <)< €+8

If A <1, then the integral of tT on [8, «) is divergent, so the first

inequality from above shows that _[f(t)dt isdivergent too. Similarly, if
a

A>1, then % Isintegrable on [, o), and the second inequality shows that
t
theintegral | f (t)dt is convergent.
a
The cases /¥ = 0 and ¢/ = o are smilarly discussed using a single
inequality from above. &
2.15. Theorem — special form # 11 of the comparison test (Test based on
Iirrg)(b—t)’qL f(t)) Let f:[a, b) - R" beintegrable on any compact from
t—

[a, b), and let usnote 7 = Iing(b—t)}“ f(t), where A € R.
t—

b
1) IfA<1and0 < ¢ < oo, then If(t)dt is convergent, and

a

b
2) IfA>1and0< /< oo, then [ f(t)dt isdivergent.

The proof is similar to the above one, but uses the testing function
on[ab).
o_p & &

The above two tests have the inconvenient that they refer to positive
functions. The following two theorems are consequences of the comparison
test for the case of non-necessarily positive functions.

2.16. Theorem — special form # |11 _of the comparison test. (Test of

integrability for f(t) = (P() on[a, o). Letf:[a ©) > R, wherea> 0,
be afunction of the form f(t) = (P( ) where:
1) @ iscontinuouson [a, «)
(04
2) Thereexists M > O such that |[o(t)dt|< M for al a > a.
a

15



Chapter V. Extending the definite integral

Then I f (t)dt is convergent, whenever A > 0.
a

o
Proof. By hypothesis, for ®(a) = I o(t)dt we have q)ifiis I/\l/lﬂ for al
a X

a €[a, ). Since A + 1 > 1, it follows that I% IS convergent. So,
a

according to theorem 2.12, j (a) da Is absolutely convergent. Integrating
a

by parts we obtain

j‘P(t) dt_jcp (t)—dt_qu;(fi ot

which shows that f |S|ntegrable on[a, «). &
2.17. Theorem — special form # 1V_of the comparison test. (Test of
integrability for f(t) = (b —t)"e(t) on [a b)). Let f:[a, b) > R, where

b € R, beafunction of theform f(t) = (b — t)’(t). If
1) ¢ iscontinuouson [a, b)

Joat

a

2) there exists M > 0 such that <M foradl a e[a b),

b
then the integra I f (t)dt is convergent for any A > 0.
a

(04
Proof. Let usremark that ®(a) = J' o(t)dt verifiestheinequality

qn(a) .M
(b- Ot)l_ | )1—% '
b
Since 1- A < 1, d—a” is convergent, hence j%da is
q(b—a)™ a(b—a)™
absolutely convergent. It remainsto integrate by parts

b b b CD(t)
J'(b—t)x(p(t)dt = j(b—t)%cp'(t)dt :kfmdt

and use the form of f. &>

16



§ V.2. Improper integrals

The following test is based on the comparison with the particular function
g:[a,x) > R, of theformg(x) = q*, where q> 0 anda> 0 (seeaso
problemV.2.1).

2.18. Theorem — special form # V of the comparison test. (The Cauchy's
root test) Let f : [a, ») — R, where a > 0, be integrable on any compact

from[a, o), and let us suppose that there exists ¢ = Iim|f(t)|1/t.

t—>w

1) If £ <1,then | f(t)dt isabsolutely convergent, and

a

2) If £ >1,then [ f(t)dt isnot absolutely convergent.
a
Proof. By the definitionof ¢, we know that for every ¢ >0 there exists
§>0suchthatt> &implies|[f(t)[" -7 |<e,ie. ¢ —e<|ft) ["'< ¢ +e.
If ¢ <1,letusnoteq= ¢ +e<1.1ft> 3, wehave|f(t)|<d .
So, it remains to see that ¢ isintegrable on [5, «) since g < 1. Because f
IS integrable on the compact [a, 6 ], it will be integrable on [a, «) too. The

second case is similarly analyzed by notingq= ¢ — ¢ > 1, when _[qtdt IS
5
divergent, and [f(t)| > q . &

The convergence of some improper integrals can be reduced to the
convergence of sequences and series.
2.19. Theorem. (Test of reduction to series) If f : [a, ®) - R" is a
decreasing function, integrable on any [a, b] < [a, «), then the following
assertions are equivaent:

a) j f (t)dt is convergent
a
atn
b) The sequence of terms u,, = If(t)dt, n € N, isconvergent
a
c) Theseries Z f (a+n) isconvergent.
neN

b
Proof. @ implies b) because if there exists / = bIim'[f(t)dt, then
—>0
a

lim [:”‘ f(t)dt = ¢ too.

N—o0
The written integrals exist because decreasing functions are integrable on
compact intervals.

17



Chapter V. Extending the definite integral

b) = c) follows from the inequality f(t) > f(a+ n)on[a+ n—-1,a+ n],
atn

which leads to Z f(a+k)< jf(t)dt

k=1
a+k
Finally, c) = a) because from jf(t)dts f(a + k —1) it follows that
a+k-1
J'f(t)dt<2f(a+k)forallbe[a a+n. &

k=0
2.20. Remarks. a) Between improper integrals and series there are still

significant differences. For example, the convergence of j f (t)dt does not
0
generaly imply lim f(t) = O (see problem 6) .
[ ]

b) The notion of improper integral is sometimes used in a more general
sense, namely that of "principle value" (also called "Cauchy's principal

value'), denoted as p.v.j ... By definition,

p.V. j f(t)dt = lim jf(t)dt and

X—)oo

pvjf(t)dt_ |um[cj8 f (t)dt + [f(t)dt]

>0 a C+e

where c € (a, b) isthe point around where f is unbounded.

Of course, the convergent integrals are also convergent in the sense of the
principal value, but the converse implication is generaly not true (see
problem 7).

18



§ V.2. Improper integrals

PROBLEMSS8V.2.

1. Show that [q'dt, wherea > 0, q > 0 is convergent for g < 1 and it is

a
divergent for q > 1.

o0 b
Hint. If g = 1, then | dx isdivergent. Otherwise jqxdx:ﬁ[qb— o] .
a

2. Study the convergence of theintegrals I SN X 4x and I In xdx .
1 X

sinx
x3

Hint. Use theorems 2.14 and 2.15 for

and | Inx|.

3. Show that j INXx is convergent but not absolutely convergent.
X

Hint. Because Iimyzl, the integral is improper only at the upper
x—=>0 X

limit. We can apply theorem 2.16 (special form#11l) to ¢ (X) =sinx, for

A = 1. The integral is not absolutely convergent because for X > a > 0 we
|snx| sin®x

hav >
*x 17 x

, and

which is divergent.

dx

1
4. Establish the convergence of I(cos s A 27

for A € (0, 2).

Apply theorem 2.17 (specia form#1V) for ¢ (X) = izcosl , since
X X

X

1
fiz cos Lt =
X

nl—sm]~ 2.

5. Analyze the convergence of the integrals

19



Chapter V. Extending the definite integral

I, = j—ndx,and J. = J.—ndX,
(o (av3)
T4Xx T4z
n n x
where ne N .
1

nyn
Hint. Use theorem 2.18 (specia form # V). For I, lim (x") =0<1,
X—>00 1
—+X
n

hence |,, is (absolutely) convergent. For the (positive) function in J, we
1 n
X X

have lim ~——~<—=n, so J,isdivergent forn > 1. Inthecase n = 1, we
xoo 1 1
7+7
n x
have lim L:oo, hence J; isdivergent.
X—)001+1
X

o0
6. Show that [tcost’dt is convergent even if lim xcosx® doesn't exist.
X—>00

1
|s this situation possible for positive functions instead of xcos x° ?

Hint. Use theorem 2.16 for ¢ (X) = xX°cos > and A = 1, since
X
[t? cost®dt :%|sinx3—sin 1| sg.

1

According to theorem 2.14, the answer to the question is negative, i.e.
positive functions which are integrable on [a, «) must have null limit at
infinity. In fact, on the contrary case, when lim f(x) doesn't exist or is

X—>00
different from zero, we have lim xf (X) = o, hence takingA =1 and /=0
X—>0

in the mentioned test, it would follow that J'f(t)dt isdivergent.
a

7. Study the principal values of the integrals

o0

% 1
1= [elsintdt,d= [|t 2,
where [X] isthe entire part of X,
20



§ V.2. Improper integrals

+00 dt
K = Icostdt,and L = -

— -1
Solution. | is (absolutely) convergent; J is divergent, but p.v.J = O; K is
divergent in the sense of p.v.; L isdivergent, but p.v.L = In2.

8. Study the convergence of the integrals I, = j x"Ne *dx, J, = j sinx"dx,
0 0

and K,, = Icosx”dx, wheren e N,
0

Hint. lim x"*%e ™ =0 for any n € N, hence applying theorem 2.14, |, is

X—>00
convergent. Jo, J1, Ko, K; are divergent according to the definition. In J, and

Ky, for n > 2 we may replacex = Yt and use theorem 2.16.

9. Show that the following integrals have the specified values:

L= Ie‘x-x”dx=n!

00 B nl
b) Jn — J'e x? 2n+1dx 2

Hint. a) Establish the recurrence formulal, =nl,_; .
b) Replace x* =t in the previous integral.

10. Using adequate improper integrals, study the convergence of the series:
a)z aeR}; b) Zln—naeR c)z o

n(In n)<

Hint. Use theorem 2.19. In _[—dx we can integrate by parts. In the

integral J'

we can change In x = t. All these integrals (and the
x(Inx)

correspondlng series) are convergent iff o > 1.
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8V.3. IMPROPER INTEGRALS WITH PARAMETERS.

We will reconsider the topic of 8§ V.1 in the case of improper integrals.
3.1. Definition. Let Ac R, 1 =[a b) c R,andf: Ax| — R be such that

for each x € A, thefunctiont — f(x, t) isimproperly integrable on [& b).
Then F : A> R, expressed by

b 00 +00
FO) = [ f(xtdt; [foxtdt; [ f(xt)dt; etc.
a a —00
is called improper integral with parameter.
3.2. Remark. According to the definition of an improper integral, F is
defined as a point-wise limit of some definite integrals, i.e.
p B
FO) = lim [ f(xt)dt.
ﬁ—)ba
More exactly, thismeansthat for any x € A and ¢ > 0, there exists
d(X, €) > O such that for all B € (b- 9, b), we have

B
[fotdt-F(|<e.

Many times we need a stronger convergence, like the uniform one, which
means that for any € >0, there exists 6(¢) >0 such that for all x € Aand

B € (b- 9, b), we have the same inequality: <g.

B
[ f(xbdt—F(x)

In this case we say that the improper integral uniformly converges to F,
u
and we note F()=lim [©  (x,t)ct.
p—b-a

The following lemma reduces the convergence of the integral to the
convergence of some function sequences and series.
33.Lemma. Letusconsider Ac R,lI=[a b)c R,andf: Axl > Ra

function, such that for each x € A, themapt > f(x, t) isintegrable on each
compact from I. The following assertions are equivaent:

(i) The improper integral I:f(x,t)dt, with parameter x, is uniformly
(point-wise) convergent on Ato F ;

(i) For arbitrary increasing sequence (Bn)ney for which By = a and

lim B, =b, the function sequence (Fn)ne, Where F,: A — R have the
N—o0

values F,(X)= j aﬁ " f (x,t)dt, isuniformly (point-wise) convergent on Ato F.
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§ V.3. Improper integrals with parameters
(iii) For arbitrary increasing sequence (Bn)ney Such that B, = a and

o0
lim B, =b, the function series > uy,, of termsu, : A — R, where
N—o0 n=0

ﬁn+l
U= [ fxt)dt,
Jip
isuniformly (point-wise) convergent on Ato F.
The proof is routine and will be omitted, but we recommend to follow the
scheme: (i)< (ii) < (iii) .

3.4. Theorem. (Cauchy's general test) Let Ac R, I =[a b) c R, and

f: Axl — R besuch that the map t — f(x, t) is integrable on each
b

compact from I, for arbitrary X € A. Then the improper integra I f(x,t)dt

a
with parameter X, is uniformly convergent on A iff for every € > O, there

exists 6(g) > 0 such that for arbitrary x € Aand b', b" € (b -5, b), we have

<é¢&.

b
[ f(xtydt
o

B

u

Proof. If F(X) = Iimjf(x,t)dt, then we evaluate
B—)ba

< +

"
[ oot
o

o
j f(x,t)dt — F(X)

"
j f(x,t)dt — F(X)

as we usually prove a Cauchy condition.
Conversely, using the above lemma, we show that the sequence (Fp)ne

where Fn(X) =[}nf (x,t)dt, Bo = &, Pn < Pn+1, and r!l_To Bn =D, isuniformly
Cauchy on A. I?l fact, for any ¢ >0 we have

IFa(X) — Fn(X) | = Bjmf (x,t)dt|<e,
whenever B, Bm (b-29,b),i.e. m,n Enno(S) e N. &

Using this general test we obtain more practical tests:
3.5. Theorem. (Comparison test) Let A, | and f be like in the above
theorem. Let also g: | — R" be such that:
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Chapter V. Extending the definite integral

1) |f(x, t) | < g(t) foral (x,t) € AxI
2) Jt')g(t)dt IS convergent.
; b
Then J' f (x,t)dt isuniformly convergent on A.
Proof. I?] order to apply the above general test of uniform convergence we
evaluate

b" b" b"
[ttt < [|f(xt)dt< [gt)dt. The last integral can be
b' b' b'

made arbitrarily small for b', b" in an appropriate neighborhood of b, since
gisintegrableon [a b). &

3.6. Remark. If compared to theorem 12, 82, we see that the uniform
boundednessrelative to x, | f(x, t) | < g(t), leads to the uniform convergence
on A. Consequently, particular tests similar to theorems 14-18in § V.2 are
valid, if the hypothesis are uniformly satisfied relativeto x € A.

Asin 8 V.1, we are interested in establishing the rules of operating with
parameters in improper integrals.
3.7. Theorem. (Continuity of F) Let f: Ax1 — R becontinuouson AXx I,

b
where A < R, and | = [a, b) < R. If the integral _[f(x,t)dtis uniformly
a

b
convergent on A, then F : A —» R, expressed by F(X) = _[f(x,t)dt IS
a

continuouson A .
u

Proof. According to Lemma 3.3, F = lim F,. On the other hand, F, are
n—oo

continuous on A (see theorem 3 in 81). Consequently, F is continuous as a
uniform limit of continuous functions. &>
3.8. Theorem. (Derivabilityof F) Let Ac R, | =[a,b) c R, and

f: Axl — R besuch that:

1) fiscontinuouson Ax |

2) Z_f Is continuouson A x |
X

3) j:f (x,t)dt ispoint-wise convergenton AtoF: A - R

4) I hot (x,t)dt isuniformly convergent on A.

a ox
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§ V.3. Improper integrals with parameters

b
Then F is derivable on A, its derivative is F'(x) = Ig—f(x,t)dt, and F' is
X
a
continuous on A.

Proof. Let us note F(X) = f:” f (x,t)dt, where (b,),e IS an increasing

sequence for which by = a and lim b, =b. According to the previous
N—oo

lemma 3.3, F= lim F,, point-wise. On the other side F, is derivable as a
Nn—oo

definite integral with parameter (see theorem 5, 81), and
von by Of
Fo(X) = ja &(x,t)dt.

Now, using the same lemma for uniformly convergent integrals, we
obtain al the claimed properties of F . &

The operation of integration may be realized either in the proper sense (as
in definite integrals), or in the improper sense.
3.9. Theorem. (The definite integral relative to the parameter) Let us
consider A=[a,B] c R, I=[a b) cR,and f: Ax| —> R be such that:

1) f iscontinuouson Ax |

b
2) If(x,t)dt isuniformly convergenton A=[a, f] to F.
a

B b[ B
Then F isintegrable on [o, B] and | F(x)dx = [ [[ f(x,t)dx]dt .

Proof. Let (b))hey be an increasing sequence such that by, = a and

u

lim b, =b. According to Lemma 3.3, F = lim F,, where F,: [a, B] &> R
N—o0 n—oo

b,
are expressed by Fn(x) = If(x,t)dt. On the other hand, according to
a

o

theorem 3.3, 8 V.1, F, are continuous functions, hence F is continuous too.
p B
So, we deduce that F isintegrable on [o, B], and [ F(x)dx= lim [ F,(x)dx.
Nn—o0
o o

Now it remainsto usetheorem 1.7, 8 V.1, in order to calculate
B b, B
JFa(dx= | { | f(x,t)dx}dt,
o a

and to apply lemma 3.3 again. &

o
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Chapter V. Extending the definite integral

3.10. Theorem. (The improper integral relative to the parameter) Let us
consider A=[o,p) c R,I1=[a,b) c R,and f: Ax|l — R be such that:
1) fispositive and continuous on Ax |
b
2) j f (x,t)dt isuniformly convergent to F: A— R on any compact from A
a

B
3) I f (x,t)dx isuniformly convergenttoG: |l —» Ronl

a

b
4) J' G(t)dt isconvergent .
a
B b
Then F isimproperly integrable on [a, B), and | F(x)dx = [G(t)dt.
o a

Proof. According to the previous theorem, for each 1 € [a, ), the function

n bl
F is integrable on [a, 1], and J. F(x)dx = I[I f (X,t)dX]dt :
o a
Let usnoteby ¢ : [a, B] x [a, b) — R the function of values

o

o(n. 1) = z f (x,t)dx if tela,p)
G(t) if t=2

The third hypothesis of the theorem shows that ¢ is continuous on the set
[a, B] X [&, b). On the other hand, if we note by @: [a, B] — R the function

b n
d(m) = I(p(n,t)dt, we obtain ®(n) = IF(X)dX for all n € [a, B). Now, the
a a

problem reduces to extending this relation for n = B. In fact, because f is

n p
positive, for all n € [o, B) and t € [a, b) we have [ f (x,t)dx< [ f(x.t)dx,

o} o
b

i.e. p(n, t) < G(t) . Since I G(t)dt is convergent, the comparison test shows

a
b

that _[cp(n,t)dt Is uniformly convergent to ®. Adding the fact that ¢ is

a
continuous, theorem 3.7 shows that @ is continuous on [a, B], hence there
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§ V.3. Improper integrals with parameters

p
exists [im @(n) = O(p), i.e. D(P) = IF(x)dx. Replacing @ and ¢ by their

n—p o

values, we obtain the claimed formula. &

3.11. Remarks. a) Theorems 3.9 and 3.10 establish the conditions when we
can change the order of integration, i.e.

Tﬁ f (x,t)dt}dx = tj)[? f (X,t)dx]dt.

aLa ap o
b) The condition f to be positive in theorem 10 is essential. For example, if

f:[1l,0)x[1,0) > Risexpressed by f(x, t) = x—t3 , then | f(x, t) | siz
X

X+1)

aswdll as | f(x, t) | s% foral (x,t) € [1,0) x[1,2), hencef isintegrable
t

on[1l,0) relativetot, and also relative to x. By direct calculation we find

= _ d = .
Fe) 1+ x)? ond G0 (1+1)?

integrableon [1,0), but

Consequently, F and G are also

G(t)dt = = = — = [ F(x)dx.
A

Excepting the condition of being positive, f satisfies al conditions of
theorem 3.10.

The integrals with parameter are useful in defining new functions. The
Euler'sT and B functions are typical examplesin this sense:
3.12. Definition. ThefunctionT": (0, « ) — (0, «) expressed by

I'(x) = Itx_le_tdt
0
is called Euler's gamma function.
The function B: (0, «) x (0, ©) — (0, «) of values
1
B(x,y) = [ H1-t)Y
0
is caled Euler's beta function.
This definition makes sense because:
3.13. Proposition. Theintegrals of I and B are convergent.
Proof. The integral which definesT" isimproper both at 0 and 0. Because
tle' < t“'fort e [0, 1], and t“ " isintegrable if x > 0, it follows that the
integral of I" is convergent at 0. This integral is convergent at « because
t"e isintegrable on [1,00) for al n € N.
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The integra which defines B is also improper at 0 and at 1, and, in
addition, it depends on two parameters. The convergence of this integral
follows from the inequality t“(1 — t)** < 2[t*" + (1 —t)*'], which holds
fort €[0, 1], x> 0 and y > O (see the comparison test). Thisinequality may
be verified by considering two situations:

a) If te[l/21),and x>0, then t*'< 2, sothatin thiscase
-t < 20—ttt 2t + (-t

b) If te (0, 12], then (1-t) € [1/2,1),andsince y> 0 too, we have
(1—t)" < 2, and asimilar evaluation holds. &

3.14. Theorem. Function I" has the following properties:

(i) itisaconvex and indefinitely derivable function;

(i) TI'x+lD=xI'Xaanyx>0;

(i) T'(n+ 1) =n!forevery n € N, i.e. " generaizes the factorial.

Proof. (i) It is easy to see that f(x, t) = t“'e" satisfies the conditions in
theorem 3.8, hence

r'(x) = [t Intdt.
0
By repeating this argument we obtain
I = [t In“tat
0

for any k eN, i.e. I is indefinitely derivable. Its convexity follows from

I"(x)>0foralx>0.
(i) Integrating by parts we obtain we obtain

I(x+1) = Itxe_tdt =— limte" +x'[tx_1e_tdt =xT(X) .
0 t—>ow 0
(iii) Accordingto (ii), I'(h+ 1) =nI'(n)=n(n-1)...1T'(1), and
r(1)= [e'dt =1.
0

3.15. Theorem. Function B has the properties:
i) By =B(y, X),i.e Bissymmetric;

(i) Forany (x,y) € (0, ) x (0, oo ) we have B(x, y) = w;
'(x+vy)
(iif) It has continuous partial derivatives of any order.
Proof. (i) Changingt = 1- 6, B(X, y) becomes B(y, X).
o x-1

.. . _ L . . -
(ii) Replacing t = in B, we obtain B(x, y) J(;—(1+V)X+yd\/. On the

other hand, changing t= (1 + v)u in T, it follows that
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§ V.3. Improper integrals with parameters

r() = 1+ vy [u ey,
0
Writing thisrelation at x + y instead of x, we have

1 T -1_—u(1+v)
C(x+y)————= [u*Y e du.
(L+v)*Y ‘([

Amplifying by v°'* and integrating like in B, we obtain

T(x+y)B(X, y) = I[vX1I Uy lgmu+y) du}dv.
0 0
Using theorem 10 we change the order of the integrals and we obtain

T(x + Y)B(X, y) = j[ux+y1e“ jv’”e“"dv]du =
0 0

= T [u > y_le_“u_xl“(x)}jx =
0

= F(X)Tuy_le_“du =T(X) ['(y).
0

(iii) This property results form the similar property of I, taking into

account the above relation between I' and B. &>
. 1 OOe—t 2 _u2 T
3.16. Remarkableintegrals. ) (=) = [~~dt =z and [e™" du="_"
27 At 5 2

(also called Euler-Poisson integral).

1
11 5,1 dx : :
In fact, B(=,=) = I''(=) = | ———, which turns out to be =, if
(2 2) (2) -Lq/x(l—x) .
replacing x = sin‘t .
The second integral follows from F(%) by takingt = u”.

®© m

b) The binomial integral | = _[X—dx, a>0,b>0,np>m+1>0
o(a+ bx"™) P
may be expressed by elementary functions only if

1) pisinteger

2) mT+l Isinteger (positive)

3) p- mT+1 Isinteger (positive).
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Chapter V. Extending the definite integral

m+1
_p _—
In fact, noting Ex": u and k= a—(%} " we obtain
a n

o Ml

| = k'[uT (1+u) Pdu.
0

Another change of variables, namely U ooy , leads to

1+u
1 m7+1_1 p_LH'_ l 1
I=k[v N @-v) M odv= kBT, pe )=
0 n n
r(m+l]r(p_m+lj
- Kk n n .
'(p)

This formula shows that in generd, | is expressed by I'; in the mentioned
cases I reducesto factorias, so | contains only elementary functions.

We recall that in the case when m+1 IS an integer, we make the
n
substitution a + bx" = t 5 where s is the denominator of the fraction p.
similarly, if ™ L_p is an integer, the evaluation of the integral may be
n

made by the substitutionax™" + b=t°.
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PROBLEMSS8V.3.

1. Show that F() = [et 300
0

dt is convergent for x € [0, o) and

F(X)=arctg x.
Hint. The integral is improper at «o; the convergence is a consequence of

SINXU '+~ 1 (see also theorem 2.16, §V.2). By

the comparison test, if g(t)=

theorem 3.8, F'(x) = . 1 5 hence F(x) = arctgx + C. Takex =0.

+ X

T

2. Calculatel(r) = [(1-2r cosx +r2)dx, where|r | < 1.
0

The substitution t = tg % inl'(r) gives
00 t2

|(r)—2j LEREE k= 4 [t
91— 2rcosx+r 1+r g (t“+a%)(1+t9)
where a = 1" > 0. Breaking up 5 212 :2A+282,
I+r t“+a%)(t +1) t°+1 t°+a
where A =-B = 21 , We obtain
a” -1
4 |\« 2 < dt
I'(r) = —| —=—-(a“+4a) =0.
1+r]| 2 '([)(t2+a2)(t2+1)

Consequently, I(r) = C, but 1(0) = 0, hence I(r) = 0 too.

3 Sow tha o(x) = [e73N
0

——dt= % —arctgx, and deduce that
Ig—mdt = (Poi sson).
0

Hint. Using the result of problem 1, ®(x) = F( )— arctg —= E — arctg x.

Another method consists in integrating two times by parts in ®'(x),
and obtaining ®'(x) = -1 —x* ®'(x), wherefrom it follows that
®(x) = —arctg x + C.
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Chapter V. Extending the definite integral

For x — oo wededuce C = % . Finally, the Poisson'sintegral is ®(0).

0 _—ax —bx 0
4. Calculate |= | € "€ 4 ad J= [ cosax ZCOSbde, where
X

0 0 X

O<a<b.

o b b|
Hint. | = [Detxdt]dx J'{J'etxdx]dt jdt |nE
OlLa alLo0

0

b
3= [| 2 [sintt jox= Hs'”tx Xt =2 (b-a) wherejﬂtxdx
0 Xa

iIsthe Poisson's integral (see problem 3.3) independently of t > 0.

ki
2

X—1
(x+1)3

11
Show that {j dx]dy L j[j y- dy}dx—l . and explain
0 o(X+Y) 2 0 o(x"‘Y) 2

why these integrals have different values.

Hint. Theorem 3.10 does not work sincef changesitssign.

5. Letf : (0, 1] x (O, 1] > R be afunction of values f(x,t)=

6. Use the functions beta and gamma to evaluate the integrals

1
8) |= [xPH(1-x")%dx, p,g,m>0;
0

b) J= pre_qux, p>-1,q>0.

Hint. a) Change the variable X" =t , and evaluate
1
= ij.tr?w_l(l_t)q_ldt = l B(E,q) .
mg m
b) Replace x? =t , and calculate

o0

+1
= 1 tpT_ .e_tdt = lr‘(p__HLj .
q; q
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CHAPTER VI.LINE INTEGRAL

We will generalize the usual definite integral in the sense that instead of
functions defined on [a, b) < R we will consider functions defined on a
segment of some curve. There are two kinds of line integrals, depending of
the considered function, which can be a scalar or vector function, but first
of al we must precise the terminology concerning curves (there are plenty
materiasin the literature).

8§ VI.1. CURVES

We analyze the notion of curve in R?, but all the notions and properties
can be obviously transposed in R , p € N\ {0, 1}, in particular in R?.
1.1. Definition. The set y = R®iscalled curve iff there exists[a, b] = R
and a function ¢ : [a, b] — R®such that y = ¢ ([a b]). In this case ¢ is
called parameterization of'y .
1.2. Types of curves. The points A = ¢(a) and B = ¢(b) are called end-
points of the curve y ; if A= B, we say that y is closed.

We say that y is ssimple (without loops) iff ¢ isinjective.
Curve v is said to be rectifiableiff ¢ has bounded variation, i.e. there exists

b n-1
Vo= SUIO[ > lo(ti2) — o )II] ,
a 8 \i=0

where 6 ={tp=a<t; < ...<t,=b} isadivisionof [a, b]. The number

b
L =V iscaled length of y .
a

We say v is continuous (Lipschitzean, etc.) iff ¢ isso.

Let us note ¢(t) = (X(t),y(t),z(t)) for any t € [a, b]. If ¢ isdifferentiable on
[a, b], and ¢' is continuous and non-null, we say that y is a smooth curve.
This means that there exist continuous derivatives X',y and Z , and

X2(t) + yA(t) + Z%(t) = 0, Vt e [a b] .
The vector t (x(t), y'(t), Z' (1)) is called tangent to vy, at Mo(X(to),Y(to),z(to)).

For practical purposes, we frequently deal with continuous and piece-
wise smooth curves, i.e. curves for which there exists a finite number of
intermediate points C € v, k= 1,n, where C, = ¢(cy) for some ¢, € (a, b),
such that ¢ is smooth on each of [a, ¢;] , on [Cy, Cq] fOral k=1, ..., n-1,
and on [c,, b], and ¢ is continuous on [a, b]. The image of arestriction of ¢
to[c,d] < [a, b] iscaled sub-arc of the curve v, so y is piece-wise smooth
iff it consists of afinite number of smooth sub-arcs.
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Chapter VI. Line integral

1.3. Remarks. The class of rectifiable curves is very important since it
involves the notion of length. Geometrically speaking, the sum

n-1
> o) —o®)
i=0

b
from the above definition of the variation V ¢, represents the length of a
a

broken line of vertices ¢(t;). Passing to finer divisions of y leads to longer
broken lines, hence y is rectifiable iff the family of these inscribed broken
lines has un upper bound for the corresponding lengths.

Without going into details, we mention that a function f :[a,b] >R has

bounded variation if it has one of the following properties. monotony,
Lipschitz property, bounded derivative, or it is a primitive, i.e

f(x)= j:w(t)dt, vxe[a,b] (for detals, including properties of the

functions with bounded variation, see [FG], [N-D-M], etc.). The above
definition of the rectifiable curves is based on the following relation
between bounded variation and length of a curve:

1.4. Theorem (Jordan). Let ¢ = (o, B8): [a, b] > R? be a parameterization
of aplane curve y. The curve y isrectifiable if and only if the components
o, and B of ¢ have bounded variation.

We omit the proof, but the reader may consult the same bibliography.

1.5. Corollary. If y isasmooth curve, thenitisrectifiable, and itslength is

L:I:\/alz(t)+ﬁ/2(t) dt
A similar formula holds for curvesin R® and R".

Because all the notions from above are based on some parameterization,
it is important to know how can we change this parameterization, and what
happens when we change it. These problems are solved by considering the
following notion of "equivalent" parameterizations of a smooth curve.

1.6. Definition. The functions ¢ : [a, b] > R® and v : [c, d] > R®are
eguivalent parameterizations iff there exists a diffeomorphism

c:[a bl - [c d]
such that ¢'(t) = Oforalt € [a b],and ¢ =y o o. Inthis case we usually
note ¢ ~ vy, and we call ¢ an intermediate function.
1.7. Remarks. (i) Relation ~ from above is really an equivalence. In
addition, this equivalence is appropriate to parameterizations of a curve
because equivadent functions have identical images. When we are
interested in studying more genera than smooth curves, the "intermediate’
function o (in definition 1.3) satisfies less restrictive conditions, as for
example, it can only be atopological homeomorphism.
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§ VI.1. Curves

(ii) Because o : [0, 1] — [a, b] defined by o(t) = tb + (1-t)a, is an
example of intermediate (even increasing) function in definition 1.3, we
can aways consider the curves as images of [0, 1] through continuous,
smooth or other functions.

Another useful parameterization is based on the fact that the function

t
o:[a b] - [0, L], defined by o(t) = [y/x2(6) + y2(6) + z2(0)d6 satisfies

the conditions of being an intermediate function. In this case s = o(t)
represents the length of the sub-arc corresponding to [a, t], and L is the
length of the whole arc y. If S is the parameter on a curve, we say that the
curveisgiven in the canonical form.

(iii) From a pure mathematical point of view a curveisaclass of equivalent
functions. In other words we must find those properties of a curve, which
are invariant under the change of parameters. More exactly, a property of a
curve is an intrinsic property iff it does not depend on parameterization in
the class of equivalent functions (the sense of the considered equivalence
defines the type of property: continuous, smooth, etc.). For example, the
properties of a curve of being closed, simple, continuous, Lipschitzean, and
smooth are intrinsic. Similarly, the length of a curve should be an intrinsic
property, so that the following result is very useful:

1.8. Proposition. The property of a curve of being rectifiable and its length
do not depend on parameteri zation.

Proof. Being monotonic, o realizes a 1:1 correspondence between the
divisions of [a, b] and [c, d], such that the variation of the equivalent
functions on corresponding divisions are equal. It remains to recall that the
length is obtained as a supremum. &

The fact that either ¢' > 0 or ¢' < 0 in definition 3 allows us to distinguish
two subclasses of parameterizations which define the orientation of a curve.
1.9. Orientated curves. To orientate a curve means to split the class of
equivalent parameterizations into two subclasses, which consist of
parameterizations related by increasing intermediate functions, and to
choose which of these two classes represent the direct orientation (sense),
and which is the conver se one.

By convention, the direct (positive) sense on a closed, ssmple and smooth
curve in the Euclidean plane is the anti-clockwise one. More generaly, the
closed curves on orientated surfaces in R® are directly orientated if the

positive normal vector leaves the interior on its left side when running in
the sense of the curve.

Alternatively, instead of considering two senses on a curve, we can
consider two orientated curves. More exactly, if y is an orientated
curve (i.e. the intermediate diffeomorphism in definition 1.3 is also
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Chapter VI. Line integral

increasing) of parameterization ¢ : [a, b] — R, then the curve denoted y,
of parameterization vy : [a, b] — R defined by y(t) = ¢ (a+ b—t) iscaled
the opposite of'y.

Another way of expressing the orientation on a curve is that of defining
an order on it. More exactly, we say that X; = ¢ (t1) is "before" X, = ¢ (1)
on vy iff t; < t, on [a, b]. Using this terminology, we say that A= ¢ (a) is
the first and B = ¢ (b) is the last point of the curve. If no confusion is

M M
possible, we can note y = AB and y” = BA. Contrarily to the division of a

curve into sub-arcs, we can construct a curve by linking together two (or
more) curves with common end-points.

1.10. Definition. Let y;, i = 1,2 betwo curves of parameterization

o : [a;, bi]— R? such that ¢1(b1) = ¢a(a,) . The curve y, of parameterization

0 : [ay, bi+ (b,— &)] > R® where
oft) = {cpl(t) if telayb]
Pa(t—by+ay)  if te[by,by+ (b —ap)]

(union) of y; and y,, and itis noted by y = y1 U v5.
1.11. Proposition. The concatenation is an associative operation with
curves having common end-points, but it is not commutative.

The proof is routine, and will be omitted. If y; U v, makes sense, then the
concatenation y, U vy; is possible, but generally y; U y ,isnot.
1.12. Proposdition. The smooth curves have tangent vectors at each My € v,
continuously depending on My . The directions of tangent vectors do not
depend on parameterizations. In canonical parameterization, each tangent
t =(X(s),y(s), Z(9) isaunit vector.
Proof. If function ¢ : [a, b] — R® of vaues o(t) = (x(t), y(t), z(t)) is a
parameterization of y, then MgM = (X(t) — X(t), Y(t) — Y(to), z(t) — z(to)).
Since o is differentiadble, MgM =~ (X'(to)(t — to), Y'(to)(t — to), Z(to)(t — to)),
with equality when t — t,. Consequently the direction of t is given by
(X'(to), Y'(to), Z(tp)). By changing the parameter, t = o(0), this vector
multiplies by ¢'(0g) # 0, hence it will keep up the direction. For the

canonical parameterization we have A SS= AX° + Ay’ + A Z, hencethe
length of the tangent vector is X %(s) + y' %) + Z %(s) = 1. &

is called concatenation
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§ VI.1. Curves

PROBLEMSS8VI.1.

1. Is the graph of afunction f : [a, b] — R acurvein R? ? Conversdly, is
any curvein R? agraph of such function?

Hint. Each function f generates a parameterization ¢ : [a, b] —» R? of the
form o(t) = (t, f(t)). Thecircleisacurve, but not a graph.

2. Show that the concatenation of two smooth curves is a continuous
piecewise smooth curve, but not necessarily smooth.

Hint. Use definition 1.7 of concatenation. Interpret the graph of x > | x|,
where x € [-1, +1], as a concatenation of two smooth curves.

3. Lety,i= 1,2 betwo curvesof parameterization ¢;: [, b] — R with
common end-points, i.e. ¢1(a;) = ¢2(az) and ¢1(by) = @2(b,). Show that both
Y1V y.and vy, U y; make sense and they are contrarily oriented closed
curves.

4. Find the tangent of a plane curve implicitly given by F(x, y) = 0. In
particular, take the case of the circle.

Hint. If x=x(t), y=y(t) is a parameterization of the curve, from
F(x(t), y(t)) = 0 on [a, b], we deduce dF = 0, hence F'y\x + F'yy' = 0.
Consequently, we can take t = (X(t), Y'(t)) = A(F'y, — F').

5. If the plane curve vy is implicitly defined by F(X, y) = O, we say that
Mo € v is a critical point iff F'y(Mo) = F'\(Mg) = 0. Study the form of y in
the neighborhood of a critical point according to the sign of

w2 " "
A= Fyy —FFyy.
Exampley?= ax’+ y*, and My = (0, 0).

Hint. My is a stationary point of the function z = F(X, y), and vy is the
intersection of the plane xOy with the surface of equation z= F(x, y). In this

instance F(xo+ h, Yo+ k) = F"(Xo, Yo)h* + 2F" (X0, Yo)hk + F"y(Xo, Yo)K’,
hence A < 0 leads to an isolated point of y, A > 0 corresponds to a node
(double point), and A = 0 is undecided (isolated point). In the example, Mg
isisolated for a< O, itisanodefora> O;itisacuspfora=_0.

6. Find the length of the logarithmic spiral o(t) = (€ 'cost, €'sin t, "),
wheret > 0.

Solution. L = Iw/x'2+y'2+z'2dt = /3.
0
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Chapter VI. Line integral

7. Establish the formula of the length of a plane curve which is implicitly
defined in polar coordinates, r = r(0). Use this formula in order to find the
length of the cardioid r = a(1 + cos0).
Hint. Following Fig. VI1.1.1.a, we have

2
AS = (rA )% + (Ar)? = {rZ + (ﬁ} }Aez .

do
A A
a
Ar
r A6 o >
0 a 2a
AQ-T
0 >
a) b)

Fig. VI.1.1

The length of the cardioid (sketched in Fig. VI.1.1.b) is
T T T
L = 2J\/r2 +r'2de = 2a\/§_[\/1+ cos0do = 4ajcos%d0 —8a.
0 0 0

8. Find the length of the curves defined by the following equations:
ar :asin3%, 0 €[0,27];

b) r =|Sin9|, 0 €[0,2r].

Answer. a) g(sn—aﬁ); b) 27.

9. Find the length of the curve of equation 6 = %(r + E) re[13.
r

Hint. Establish aformula similar to that in the above Problem 7. The length

of thecurveis 2+%In3.
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8VI.2. LINEINTEGRALS OF THE FIRST TYPE

In this paragraph we consider the line integral of a scalar function. Such

integrals occur in the evaluation of the mass, center of gravity, moment of
inertia about an axis, etc., of amaterial curve with specified density.
2.1. The construction of the integral sums. Let y be a smooth and
orientated curve in R®, of end-points A and B. By a division of y we
understand aset 6 ={My € y: k=0, 1, ..., n} such that My = A, M, = B,
and My < My, in the order of y, forallk= 0,1, ..., n—1. Thenormof 5 is
511 = max[M My,

M
If yy = MM, denotes the sub-arc of the end-points My and My.; on v,

we write AS, for the length of v, k=0, 1, ..., n — 1. On each sub-arc y, we
choose apoint P, between My and My, in the order of y. The set
&' ={Px eyr: k=0,1, ..., n—1} represents the so called system of
intermediate points.

Fig. VI.2.1.

Now we consider that y is entirely contained in the domain D on which
the scalar function f is defined (see Fig. VI1.2.1). Under these conditions, we
can caculate

n-1
S./(6, )= > f(R)As,
k=0
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Chapter VI. Line integral

which is caled integral sum of the first type of f on the curve v,
corresponding to the division 6, and to the system </ of intermediate points.
2.2. Definition. We say that f is integrable on the curve y iff the above
integral sums have a (finite) limit when the norm ||3||— O, and this limit is
not depending on the sequence of divisions with this property, and on the
systems of intermediate points. If this [imit exists, we note

lim o,)=| fds,
o0 S/
and we call it lineintegral of the first type of f on the curve vy .
2.3. Remark. The above definition of the line integral makes no use of
parameterizations, but concrete computation needs a parameterization in
order to reduce the line integral to ausua Riemann integral on R. In fact, if
¢ : [a, b] > R3®is a parameterization of vy, then to each division § of y
there corresponds a divison d of [a, b], defined by My = o(t) for al
k=0, ..,n-1 Of course, |[d|| — Oiff ||5]] - O. Similarly, to each system
& ={M¢e y: k=01, .. n-1} of intermediate points of vy, there
corresponds asystem 7= {0y €[ty tk+1] : k=0,1, .., n— 1} of intermediate
points of [a, b]. The values f(P,) may be expressed by (f - ¢)(0y), such that

n-1

S/, )= D (f o0)(BK)AS, =
k=0

tk+l

n-1
= 21 (0K, Y(0K), 2(0)) [ /X2 (1) + Y2 (1) + 22 (t)ct.
k=0 t,

Finally, using the mean theorem for the above integrals, we obtain
n-1
S/, )= Y(Fep)ONX? @)+ Y2 (0) + 22 (01 (e ).
k=0

which looks like an integral sum of a simple Riemann integral. Thus we are
led to the following assertion:
2.4. Theorem. Let v be a (simple) smooth curvein D < R® and let

f: D - R be a continuous scalar function. Then there exists the line
integral of f on y , and for any parameterization ¢ : [a, b] —> R? of y we
have

b
[ fds = [(fop)®)e ®)[ct.
y a

In particular, the line integral does not depend on parameterization.
Proof. Let usnote F(t) = (fo @)(t)|| o'(t)]|, and let

n-1
or(d, @) = D (f o @)(Ok)|e" (Oh)|(trr —ti)
k=0
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§ VI.2. Line integrals of the first type

be the Riemann integral sum of F on [a, b]. Because vy is smooth, it follows
b

that F is continuous, hence there exists j F(t)dt = _H lim og(d, 7 ). More
—0

exactly, for every € > 0 there exists 17 > O such that for every division d of
[a, b], for which ||d|| <n1, we have

Jor(d, 7)) = [ F (Dt | < 5. *)

On the other hand, fo ¢ is uniformly continuous on the compact [a, b,
hence for any € > 0 there exists 1, > 0 such that for al t', t* € [a, b] for

which [ t' — t"| <m,, we have | (fo @)(t') — (fe @)(1") | < i where L isthe

length of y. If disadivision of [a, b] such that ||d|| <1, then
S,/ . ) —oe(d, 7 )| =

(f = 0X00 = (f @)@ |0 @)t~ 1] < ZAsk< (*)

Consequently, if disadivision of [a, b] for which ||d|| < n =min {nl, N2},
then using (*) and (**) we obtain

S./6. ) ~[F(t)et|<
<1806, ) —or (A, ) | +lor (6 7 )~ [JF (et <,

.e. faF(t)dt isthe limit of the integral sum of f on y.

The last statement of the theorem follows from the fact that the integral
sums S, /(5, ¢/) do not depend on the parameterization, and the
parameterization used in the construction of F isarbitrary. &

The general properties of the line integral of the first type are summarized
in the following :
2.5. Theorem. (i) The line integral of the first type is a linear functional,
i.e. for any smooth curve vy, continuous f, g, and A, u € R, we have

jy (Af + pg)ds= A jy fds+ u jy gds.

(ii) Thelineintegral is additiverelative to the arc, i.e.
fds=| fds+ | fds,wh - :
J.y S J.Vl S Iyz S, whenevery = y1 U 72

(iii) The line integral of the first order does not depend on the orientation
on the curve, i.e.

[ fds=] fds.
y ¥
The proof isdirectly based on definition 2.2, and will be omitted.
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Chapter VI. Line integral

PROBLEMS8VI.2.
1. Calculate I (x+ y+ 2)ds, where y (spiral) hasthe parameterization

Y
0 : [0, 27] > R® o(t) = (cost, sint, t).
Answer. 242 .

2. Evaluatetheintegral _[y (x+ y)ds, where  isthe curve of equation

(x2 + y2)2 = a2(x2 - y2) , X>0.
Hint. Recognize the lemniscate in polar coordinates r = a~/cos26 , and use
the parameterization

X = a4/€0S20 - cosf 0 { T ﬂj|
, 0e .
y =a+/cos20 -sinf

The answer is a%+/2 .

3. Calculate the mass of the ellipse of semi-axes a and b, which has the
linear density equal to the distance of the current point up to the x—axis.
Hint. The recommended parameterization is given by ¢ : [0, 27] — R?,

where ¢(t) = (acost, bsin t). We must calculate
[ lylds= 20+ Z%Ibarcsin e
¥

wheree= 1 Va2 — b? isthe ex-centrici ty of the dlipse.
a

4. Determine the center of gravity of a half-arc of the homogeneous
cycloidx= a(tsint), y= a(l - cost), wheret < [0, z].

Hint. X = ﬁ | xp(x, 9)ds, yo= ﬁ | yp(x, s)ds, where M is the mass of
y y

thewire. Inthiscase Xg = yg = ga.

5. Find the moment of inertia, about the z—axis of the first loop of the
homogeneous spiral x = acost,y=asnt, z= bt.

Hint. 1,= [ (¢+Y)p(x Y, 2) ds= 2za’va® +b*.

/4
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§ VI.2. Line integrals of the first type

6. A mass M is uniformly distributed along the circle X* + y* = & in the
plane z = 0. Find the force with which this mass acts on a mass m, located
at the point (0, 0, b).

Hint. Generally speaking, F = kM—;nr. In the particular case F = (0,0, F,),
r

where F, = ka' (z- ZO)ps(X’ Y1) o kal\gbg,z .
Y r (a“ +b%)
7. Let ¥ be an arc of the astroid in the first quadrant, whose local density

equals the cube of the distance to the origin. Find the force of attraction
exerted by ¥ on the unit mass placed at the origin.

Hint. A parameterization of the astroid is x = acos’t, y= asin’t. Uptoa
constant k, which depends on the chosen system of units, the components
of the force have the expressions:

(/2 . 4 _3ak
Fy=k-1] xds = k[ '“3asintcos*tdt = == ;
Y 0 5

= = k[*?3agn? _ 3ak
Fy—k‘lj.y yds = k.[o 3asin“tcostdt = =

8. Show that if f is continuous on the smooth curve vy, of length L, then
there existsM € vy such that the mean value formula holds

[ fds=Lf(m).
Y

Hint. Using a parameterization of y, we reduce the problem to the mean
value formulafor a Riemann integral.

9. Show that if f is continuous on the smooth curve vy, then
|| fds| < [|f|ds.

Y Y
Hint. Use theorem 2.4.
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8 VI.3. LINEINTEGRALS OF THE SECOND TYPE

The main object of this paragraph will be the line integral of a vector
function along a curve in R*. The most significant physical quantity of this

type isthe work of aforce.
3.1. The construction of the integral sums. Let y = R? be a smooth

orientated curve, and let F : D — RR® be a vector function. We suppose
thaty — D, and that F has the components P,Q, R: D — R, i.e. for every
(x,y,2) € D,wehave F (x,y, 2) = (P(X, Y, 2), Q(X, ¥, 2), R(X, V, 2)).

Alternatively, using the canonical base {i,],k} of R®(see Fig. V1.3.1),
weobtainF =xi +yj +zk and F =Pi + Q] + Rk.

Z A B
M+ =
Tk k+1 F
K M
0 . >y
7
|
A D
X
Fig. V1.3.1

Ifd={Mxe y:k=0, .., n} is a division of y, we note fj, for the position
vector of M,. For each system of intermediate points

M
&:{Tk: (&k,nk, Ck) € MkMk+1 k= o,..., n—l}
we construct the integral sum
n-1
SY,IE(S , ) = kz—:0< F(Tk) ka1 — T >=

n-1
=" [Pk Mo G 0%+ 1 = %) + Q& M G (Yie 1= Yi) + R(Ex Mk G (Zie 1 — 2]
k=0

where< . , . > isthe Euclidean scalar product on R®. These sums are called
integral sums of the second type of F along the curve y.
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§ VI.3. Line integrals of the second type

3.2. Definition. We say that F isintegrable on y iff the integral sums of
the second type have a (finite) limit when the norm of ¢ tends to zero, and
this limit is independent of the sequence of division which have |[3]| — O,
and of the systems of intermediate points. In this case we note the limit by
S, ¢ (8,/)=[ <F,dr>=[ Fdr = | Pdx+ Qdy+ Rdz
Y Y Y

and we call it lineintegral of the second typeof F on'y .
3.3. Remark. The main problem is to show that such integrals are also
independent of the parameterization of y, and to calculate them using
parameterizations. We will solve this problem by reducing the integral of
the second type to an integral of the first type, which is known how to be
handled. In order to find the corresponding scalar function, we modify the
form of theintegral sums by using a parameterization ¢ : [a, b] — R® ofy.
In fact, if @ (t) = (X(t), y(t), z(t)), then according to Lagrange's theorem, on
each [ty, tk.1] we have

X(tkr1) — X(t) = X (0 (tiera — )

Y(ter1) — Y(t) = Y (0) (tr1 — 1)

Z(te1) — 2t = Z(6) (ter1 — 1),
where 6.5, 6, 6 e (ty, ter1). Consequently, sy c (8, ) becomes

[im
8]0

n-1
Y. [P@(@X () + Qo)) (6 + R@(8)Z (0] (e =1, (*)
k=0

where ¢(6y) = Px, k=0, ..., n— 1, are the intermediate points of 5.

r

I~

Let us note the unit tangent vector at a current point of y by C =

More exactly, if M = ¢(0), 6 € [a, b], then )
X0 +y'(0)]+Z(0)k
UX2(0)+y?(0)+ 22(6)
Let us consider the scalar function f = <F , £>, which has the integral
sums of the first type (see remark 3in 82)

n-1 _
S, g B )= 2, (fo (N T (Ot~ (**)
k=0

By comparing the integral sums of F and f , we naturaly claim that the

line integral of the second order of F reduces to the line integral of the
first order of f. In fact, thisrelation is established by the following

3.4. Theorem. Under the above notations, if F is continuous on y, then F
is integrable on y, and we have I Fdr = _[ fds.
y ¥

C(M) =
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Chapter VI. Line integral

Proof. If F is continuous, then f is continuous too, since C is continuous
for smooth curves. Consequently, according to theorem 4 in 82, f is
integrable on 7. It remains to evaluate

s, ¢ 6.7)- fdsl<
Y
< 1S, 6. F)=8,6,7)N+IS, (6 )~ [ fds
/4

The last modulusiis less than % for ||8]| < my, hence it remains to find an
upper bound of the other modulus. In fact, using (*) and (**) we obtain :

1S, ¢ (6.97) =S,/(6, ) <
H H 2 (01) [X O T 'O — X (0 117 (O 1(tiees — 1] +

+ Z | H H (0 Y OIT O = YO 117 ()| 1t — 1] +

+ Z | H H 0 ZOANT 'O = (0 IIF (O 1(ther — ) -
Using the uniform continuity of the functions P o ¢, Qo ¢, Ro ¢, ||T']|
(which aso is different from zero!), and X', y', Z on [a, b], thisexpression is
also less than % for ||3]] <Mz . &

3.5. Corallary. The line integral of the second order of a continuous
function on "smooth curve " does not depend on the parameterization (up to
sign, which is determined by the orientation!).

Proof. Because ||C|| = 1, f does not depend on parameterization, hence it
remains to apply theorem 4 in 82, which expresses a similar property of the
line integrals of the first type. &

3.6. Corollary. For any parameterization ¢ : [a, b] — R® of y, we have:
[ Fdr=
Y

b
=f [P(X(1), y(©), zZ()x' (1) + QX(1), Y1), zZ())y'(t) + RX(V), y(1), z(t))Z (t)]dt.
Proof. Using theorem 4 in 8§2, for f= F C, we obtain

b
[ Fdr =] fds=[ (feq)®llo'®ldt =
Y Y a
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§ VI.3. Line integrals of the second type

b
_ = 1 : _
—£ ((F 1) < 9)(1) 0] [l o'(O)f dt =

b
=[ (P @)X(®) + (Q o )OY® + (Re p)(HZ())] dt,

where we remarked that ||F (0[] = [lo'®)| &

The genera properties of the line integral of the second type can be
obtained from the similar properties of the line integral of the first type
(formulated in theorem 5, §2).

3.7. Theorem. Theline integral of the second order has the properties.
(i) Linearity relative to the functions:

[ OF +uG)dr =Af Fdr +uf Gdr

¥ ¥ Y
(if) Additivity relative to the union of curves

[ Fdr=] Fdr+ [ Fdr

Y1YY2 Y1 Y2

(iii) Orientation relativeto the senseonthecurve [ Fdi =— | Fdr.
¥ Y

Proof. Properties (i), (ii) are direct consequences of (i), (ii) of theorem 5,
82. Relative to (iii), it is necessary to remark that even if the line integral of
the first type is the same on y and y ~, function f in the formula established
in the above theorem 3.4 depends on the sense chosen on y. In fact, if
¢ :[a, b] > R® is a parameterization of vy, then C(¢(0)) = —C(y(t)) at
each (0) = y(t) € v. &

3.8. Remark. By calculating line integrals of the second type, we can see
that sometimes the result does not depend on the curve but only on the
endpoints (see problem 2). In practice this is an important case, for
example, when the integral represents the work of a force, so it must be
carefully analyzed. This property of the line integral will be studied in
terms of "total differentials’. More exactly, F dr is considered to be atotal
differential iff there exists adifferentiable function U : D — R such that

dU = Fdr =Pdx+ Qdy + Rdz.
Alternatively, F dr isatota differential iff F =grad U, i.e. F derives

from a potential.
39. Theorem. (i) If D < R*isanopen set, and U : D —» R is a

differentiable function suchthat F = grad U, then for any smooth curve
v < D, of end-points A and B, we have
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Chapter VI. Line integral

[ Fdr =u() -u®),

Y
i.e. thelineintegral of F is not depending ony .
(i) Conversaly, if D < RR®is an open and connected set, and F: D — R®
IS a continuous vector function for which the line integral depends only on
the end-points of the curves, then F df isatotal differential.
Proof. (i) If ¢ :[a, b] > R® is a parameterization of vy, and according

to the hypothesis P = %,Q= a—U,R: %,then
OX oy 0z
[ Fdr =] Pdx+ Qdy+ Riz= | Laxe X dy+ Xz =
" " OX oy 0z

[ (o) x® + 2 (o) v + 22 (o) 2(0)] dt =
oy 02

ox

Q —T

b
=] (U o)t dt = Ulo(b)) - U(p(@) = U(B) - U(A).

(i) We have to construct U, for which F = grad U. With this aim we fix
A= (X,Y0,20) €D, andwelet B= (X, Y, 2) freein D. Because D is open and
connected, it will aso be connected by arcs, hence there exists a smooth
curve Y < D of end-points A and B. Consequently, we may define a
function U: D — R by formula

B
Ux,y, 2) = I Fdr,
A
where we mention only the points A and B because, by hypothesis, the
considered line integral does not depend on the curve, which has these end-
points. It remains to show that 6_U= P, %: Q, 6_U= R, a any point
OX oy 0z
B=(xY,2 € D. Infact,
Ux+h,y,2-UXY, 2= J' Fdr,
Th
where vy, IS any curve (in particular a straight segment) between (X, y, 2) and
(x+hvy 2.
Using the parameterization ¢y, (t) = (x + th, y, 2) of y,, we obtain

1
U(x+ h,y, 2) - U(X Y, 2) :hj P(x + th, y, 2)dt.
0
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§ VI.3. Line integrals of the second type

Applying the mean-value theorem to the last integral, it follows that there
1

exists 0 e (0, 1) such that j P(x + th, y, 2)dt = P(x + 6h, y, Z), hence
0
U(x+hy,2)-U(XY,2)
h
Since P is continuous (as a component of F ), it follows that there exists
a_U(X’ Y, Z) = lim U (X+ h; Y, Z) —U (Xa Y, Z)
OX h—0 h
Similarly we evaluate the other partial derivative of U . &

=P(x+ 6h,y, z).

=P(x, Y, 2).

3.10. Remark. (i) Beyond the existence of the potential U, the above
theorem contains aformula, which gives U concretely, namely
(x.y,2)
ux,y, 2= j Pdx + Qdy + Rdz
(X0+Y0120)

More than this, because this integral is independent of the curve, we can
chose it such that to obtain the most convenient calculation. In practice, itis
frequently prefered abroken line
Y = [(X0, Yo, 20), (X Yo, )]V [(X, Yo, Z0), (X ¥, Zo)]V [(X Y Z0), (X, Y, 2],
when the line integral reduces to three simple (Riemann) integrals, i.e.

X y z
U Y, 2= [ Pt Yo z)dt+ | Qxt z)dt+ [ R(xy, bt
Xo Yo 2

This formula provides U up to a constant which corresponds to the choice
of (Xo,Yo,Zo), and equals U(Xo, Yo, Z). A practica key of a correct
calculation is the reduction of the "mixed" terms, which are evaluated at
(X’ y01 ZO)’ (X! y! ZO)’ etc.

(i1) The above formulas for calculating U can be considered as rules of
determining a function when its differential is known; in other words this
means finding anti-derivatives (or primitives) of a given function. Simple
examples show that only particular triplets of functions (P, Q, R) represent
partial derivatives of a function U, so it is very important for practical
purposes to know how to identify these cases.
3.11. Definition. We say that the field F e C';? (D) is conservative iff its
components P, Q, R satisfy the conditions

oP 0Q 0Q OR OR _oOP

oy ox oz oy ox oz
at each point of D. Instead of "conservative" many authors use the term
“irotationa" which derives from the notion of "rotation”. More exactly, the
rotation of F = (P, Q, R), noted rotF, is defined as a vector formally
expressed by the determinant
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—

K
rot F = 9
oz

O 2o

o
OX
P

Ry

The assertion " F is conservative" redly reducesto "rot F = 0" .
3.12. Theorem. Let D < R® be an open and star-likeset, and let

F < C'* (D) be avector field. A necessary and sufficient condition for

F to derive from a potential is to be conservative.
We remind that a domain D — R3®is said to be star-like if there exists

Mo e D suchthat MgM = D holdsforal M eD .

Proof. If F =grad U for someU : D — R, then F has the components

P= %—U, Q= a_u, R= aa_u. Because P, Q, R e C';3(D), we can apply
X Z

oy

Schwartz' theorem (on mixed second order partial derivatives) to U, and so
we easily seethat F isconservative,

Conversely, let F be conservative on D. Since D is star-like there exists
Mo € D such that for any other M € D we have MM cD. A
parameterization of this segment is

P(0) = (0 + t(X—Xd), Yo+ (Y —Yo), 20+ 1(z—Z)), t € [0,1].

Let usdefineU: D — R, by

Ux y, 2 = I Fdr.
MM

Using the parameterization ¢ in the formula established in corollary 3.6,

we obtain

1

U Y, 2= [ [(P e @)()(X—X) +(Qe @)()(Y—Yo) + (Re 9)(t)(z— zo)]clt
0
According to theorem V.1.5, concerning the derivation relative to a
parameter in a definite integral, we have

ou
—(X, Y, 2Z) =
aX(y)

1 op 6Q oR
= f [—a (e(INt(X—=X0) + (P o @)(t) + — (o())t(Y—Yo) + — (o(t))t(z—z0)] dt
5 X OX OX

The hypothesis of being conservative allows us to express this integral
only by the partial derivativesof P, i.e.

ou 1 . _
S X% =] [P e o)+ (Po o)O]dt=
X 0
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§ VI.3. Line integrals of the second type

[t(P - @)I'(D)dt = (P - ¢)(1) = P(x, Y, 2).

or—r

Consequently, for any (x, y, 2 € D we have %—U(X, Y, 2 = P(X Y, 2.
X

Similarly, we prove that Qz Q, an a—U: R. >
oy 0z

Simple examples show that the above condition on D to be star-like is
essential for a conservative field to derive from a potential.
3.13. Example. On the open (but not star-like) set D = R? \ {(0,0)} we

2 2

cmwammmdﬁmw=[ L.
XS +y° X4y

2]. Obviously, we have

P _R

F eC¥D), and , hence F is conservative on D . Now, let y
X

be the unit circle in the plane traced counter clockwise. Since

[ Fdr=2n=0

Y
itisclear that F can not derive from a potential.
3.14. Conclusion. In practice, when we have to calculate a line integral of
the second type, it is useful primarily to check whether the corresponding
vector field is conservative or not. If it isn't conservative we must find a
parameterization of the curve and apply the most general formula (as in
corollary 3.6). If the field is conservative (and the domain is star-like!), we
apply the formulain theorem 3.9 (i), when U may be obtained as in remark
10, (i) .

Finally, we mention another application of the line integral of the second

type (in addition to the work of aforce).
3.15. Proposition. Let y be a simple, smooth and closed contour, traced
one time counter-clockwise, and having the property that any parallel to the
ox and to oy axis meets the curve at most twice. Then the area bounded by
v is expressed by

1
ool = EI xdy — ydx.
y

Proof. We can consider y = y; U y, asin Fig. VI1.3.2 (a), and alternatively
Y=1v3 U ysasinFig. VI.3.2 (b).

By interpreting [ydx and | ydx like areas of sub-graphs, we obtain
71 V2
oof = —j y dx.
y
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Y2

M
Y1
0 =X 0 :x
a) b)
Fig. VI.3.2.
Similarly,
ool = I X dy.
y

It remains to add the two expressions of /. &

Thisformulaof o</ isbe aparticular case of the Green-Riemann formula
(see later VI1.2.21 and 22). There exist many similar formulas of the area,
which involve non-Euclidean coordinates. In particular:

3.16. Example. Let us say we need the formula of the area of a plane
domain D, which is bounded by a closed curve, explicitly expressed in
polar coordinates by the equation r = ¢(0), where ¢ : [0, 6,] — R. Inthis
0,
case we have to evaluate o/ = % [9?(6)do.
0,

In particular, the domain contained inside Bernoulli's lemniscate (of

equation r? = acos 2 0) has the area o7 = a°.
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PROBLEMSS§VI.3.

1. Evauate the work of the forces
F=xi+y] ad G=yi-xj
in the process of moving a material point along an ellipse of half-axes a
and b in the xoy plane.
Hint. We cadlculate J.ylfdr and J.yédr, where y has the parametric

equations x=acost,y=bsint,t € [0, 2x) .

2. Calculate | 2xydx + x*dy, where O = (0,0), A= (2, 1), for different
Vloa

arcs vlpa in the plane (straight line, parabolas, broken lines) (of end-

points O and A).

3. Find the work of theforce F (x,y, 2) = (y—z z— X, Xx—Y) by moving a
point along the screw line y of parameterization X = acost,y = bsint,z=
bt, t € [0, 2n).

Solution. w= [, Fdr =—2za(a + b).

4. Calculate theintegral | xy(yzd X~ >2<dy) , where v is the right-hand loop
x> +y
y

of the lemniscate r* = a” cos 2a, traced counter-clockwise.
Hint. A parameterization of vy, in polar coordinates, is:

X =T COSo = aC0So+/ COS20 [ 7T n}
, oe|l——,—|.
y =rsina = asina/cos2a 4 4

Theintegra isnull.

5. Find the anti-derivative U if the differentid is:
(i) dU= (2x+ 3y)dx + (3x—4y)dy
(i) dU=¢€"7[(1+ x+ y)dx+ (1-x-y)dy]
(ili) dU = xdx + ydy
(iv) dU = xdy + ydx

(v) du= ydxy—zxdy
(vi) dU = y?zdx + (2xyz + 1)dy + xy’dz
. 2X 2y
(vii) dU = dx + dy + 2zdz.
N y2 N y2
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Hint. Verify that the corresponding field is conservative (i.e. the problemis
correctly formulated), identify the domain and caculate U using the
formulain remark 3.10, (i).

6. Find the anti-derivatives of the integrands and calcul ate:
12

0 | ¢+ axy) dx+ (6xXy° -5y dy
(-1-1)
(i) (0) (X+ 2y)dx + ydy
(10) (x+ Y)Z
equationy = — X

(l},l) X y
(iii) et Y [OX+ | ———+ X |dy.
(0,0,0) X% + y2 vV X+ y2

7. Evauatethelineintegrals of thetota differentials:
(2,2,2)

() | yzdx+zxdy+xydz
@1y
(112

, Where y does not intersect the straight line of

(i) J~ xdx + ydy + zdz
(0,0,0) \/ X + y2 +2°
(. )
(iii) j yzdx+ Dx?zw xydz , Where the integration curveis situated in
112

the first octant.

8. Find the work of the Newtonian force F = —% -T', which is necessary to

-

move a material point from A(Xq, y1,%) to B(X,, Y,,2,) aong an arbitrary
curve y of these endpoints, such that (0, 0, 0)& y .
Hint. — F derives from the scalar potentia
_ T utdt +}’ ptdt +f ptdt |
(2427 1 0C+2 4D (P yP+t?)
Hou

3

(X2,Y2,2,) whereU = &2 — &2

B= ..
Conseguently, W = [ 'F-dr = U(xy, 2y sy —t
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9. Show that if f: R* —» R is continuous, and y is a closed piecewise

smooth contour, then | (¢ + y?)(x dx + y dy) = O.
4

r

Hint. Consider ®(r) = I f(t)dt and V(X, y) = % ®(x + y?), such that the
0

integral becomes dV .

10. A circle of radius r is rolling without sliding along a fixed circle of
radius R and outside it. Assuming that ?R Is an integer, find the area

bounded by the epicycloid (hypocycloid) determined by some point of the
moving circle. Analyze the particular case of the cardioid, (where R = r),
and asteroid, (when R = 4r).

Hint. A parameterization of the epicycloidis

x=(R+r)cost-— rcos%t, y=(R+ r)sint—rsin%t,

where te[0, 2r) isthe angle between two radiuses of the fixed circle, one
corresponding to the starting common point, and the other to an arbitrary
current point. The parameterization of the hypocycloid is obtained by
replacing r by —r. Answer: z(R+ r)(R+ 2r).

Xdx + ydy + zdz
2 y2 ., 52\3/2
- (X“+y°+29)
endpoints (1, 0, 0) and (0, 1, 0).
Hint. V= 06¢ + V?+ Z) ¥%(xi + yj + Zk) derivesfrom apotential U, hence
| = U(B) - U(A).

11. Evauate | =

where T' is a smooth curve of
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CHAPTER VII.MULTIPLE INTEGRALS

In this chapter we'll extend the notion of integral defined on an interval
| < R, and that of line integral along a curve, by considering integrals on

domainsin R?, R® and generally in RP. These are called "multiple integrals'

because of the higher dimension of the considered domains. The whole
theory is based on the notions of "area' and "volume" which extend the
notion of "length". Because al these notions are particular cases of
"measures’, for the beginning we have to clarify some topics concerning
the Jordan's measurein RP, p € N'.

8§ VIl.1. JORDAN'S MEASURE

It iswell known that in the process of calculating areas and volumes, we
start out with simple figures like rectangles and rectangular parallel epipeds,
which are later used for approximating other figures (a significant example
IS the area of a sub-graph). This method can be unitarily applied in order to
measure bodiesin RP, for arbitrary p e N'.

1.1. Déefinition. If P = [a;, by] x [a; ,by] x ... X [a,, by] is a closed
rectangular parallelepiped (also called p-dimensional interval, or
"paralleloid"), then the number

p
v(P) = ]« —a|
k=1

iscalled p—volume of P, or measure of P.

Any finite union of such closed rectangular parallelepipeds, each pair of
them having no common interior point, is named elementary body. The
p—volume (or measure) of an elementary body is the sum of the p—volumes
of all parallelepipeds which form the body.

1.2. Remark. (i) The idea of considering finite families of parallelepipeds
in the so called elementary body is specific to the measure theory in
Jordan's sense. The adternative is the Lebesgue's point of view of taking
countable families of parallelepipeds in the elementary bodies. We will
develop here the Jordan's measure theory because it is ssimpler, and it is
sufficient for studying the Riemann multiple integrals. However, we
mention that the simplicity of Jordan's measure is counter-balanced by
some disadvantages (for example, see later the notion of measurable set).
(i) The union of two elementary bodies is an elementary body, and the
same for the adherence of the difference (not for the difference itself).
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§ VII.1. Jordan’s measure

(ili) The measure of an elementary body does not depend on its
decomposition into rectangular parallelepipeds,; there are till problems
when the sides are no longer parallel to the axis.
1.3. Definition. Let A < RP be an arbitrary bounded set, and let P, P"
denote elementary bodiesin RP. Then the number

i (A)=sup {v(P):P < A}
iscalled Jordan'sinterior (or "interna") measure of A, and

He (A) =inf {v(P") : P* o A}
Is called Jordan's exterior (or "external") measure of A. These notions
making sense since A is bounded.

If w (A) = e (A) we say that A is measurable in Jordan's sense, and the

common value, denoted p(A) = ui (A) = pe (A) is called the Jordan's
measure of A.

1.4. Examples. (i) Theset A= {1 : neN'} ismeasurablein R, and
n

1w(A) = 0. There are still countable sets (e.g. N, Q n [0,1], etc.), which are
not measurable, hence this property depends on the position of the terms

(unlike the Lebesgue's measure, which is null for any countable set).
(i) The dementary bodies and their interiors are measurable sets,

and we always have u(B) = v(B) = u(B).
(iii) If A and B are measurable setsin RP, then A U B, A n B, A\ B are
also measurable (for more details see Theorem 1.6 below).

In order to evaluate measures, the following lemmais helpful:
1.5. Lemma. Let A be a bounded set in RP. For A to be measurable is
necessary and sufficient that for each ¢ > O there exist some elementary
bodiesP < Aand P' o Asuchthat u(P') — u(P) <e.
Proof. Because aways u(P') > u(P), it enough to express the condition

sup {p(P):Pc At =inf{ n(P"):P" 2> A}

interms of € > 0. &>

Now we can establish some properties of the Jordan's measure:
1.6. Theorem. If A, B < RP are measurable sets, then:
() Ac BimpliesO < pn(A) < n(B)
(ii) If A n B contains no paralleoid of non-null p—volume, then

p(AUB) = p(A) + pn(B)

(i) IfAc Bthenpu (B\A) =pn(B)—pn(A).
Proof. (i) Is obvious. (ii) is based on the fact that for two paralleloids P, Q
with no common interior points we have u (Pu Q) = w(P) + u(Q). (iii) We
may apply (i) toB= AU(B\ A). &
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Chapter VII. Multiple integrals

Because the sets with null measure play an important role in measure
theory, we distinguish them by a special term:
1.7. Definition. We say that aset A < RP is negligible iff it is measurable
and w(A) =0
1.8. Remarks. (i) The finite sets are negligible. The finite unions of
negligible sets are also negligible. Any subset of a negligible set is
negligible.
(i1) Since we aways have p; (A) < e (A), it follows that A is negligible iff
e (A) = 0. In other terms, Ais negligible iff for every € > 0O there exists an
elementary body B, such that A — B and v(B) < «.
(iii) If A'is bounded in RP, and p < q, then A is negligible sets in RY In
particular, the segment [a, b] — R is negligible in R More generally, the
fact that the smooth curves and surfaces are negligible in R® is a
conseguence of the following theorem:
1.9. Theorem. Let A = R be bounded. If f : A - RY wherep < q, is
Lipschitzean (i.e. there exists ¢ > 0 such that [f(X) — f(y)|| < c |[x — y|| for all
X,y € A), then f(A) isnegligiblein R
Proof. Let K = RP be a p—cube of side h such that A = K. By dividing

each side into n equa parts, the cube breaks up into n° cubes of side 2

We claim that if o is such a small cube, then f(An ©) is contained in a

cube of side 20"’D in RY. In fact, if An o = @ or consists of asingle point,
n

the assertion is obvious. If AN o consists of more than two points, then we
fixa e AN o, and for any other X € AN ®, we obtain

h
I — @)l < clix—alf < cp_,
i.e. f(An o) < S(f(a), cp%). It is sufficient to remark that this sphereis

included in a cube of side Zcp% :

If Pisthe union of all the cubes which contain sets of the form f(A N ®),
then f(A) < P, and
2cph 1

q
WA = Py < P (2P (acprye L
n

Fromq> pitfollowsthat lim
n—ow N4~

The following theorem shows that the negligible sets are very useful in
establishing the measurability of other sets.

=0, hencef(A) isnegligible. <
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§ VII.1. Jordan’s measure

1.10. Theorem. Let A = R be a bounded set. A necessary and sufficient

condition for A to be measurable is that FrA be negligible (in the sense of
the Jordan's measure).
Proof. Let A be measurable. Then for any € > 0 there exists the elementary

bodies P, Qsuchthat Pc A< Q and u(Q) — u(P)<e. Because FrA < Q\ P

and p(P) = p(P), we obtain 0< pd(Fr (A)) < W@\ P) = w(Q) — pn(P) <,
which shows that FrA is negligible.
Conversely, let us suppose that FrA is negligible, i.e. for any € > 0 there

exists an elementary body B such that FrA — B, and u(B) <e. Itiseasy to
see that A\B is open and Fr (A\B) c FrB. Let us note P= A\B,

Q= AuB. Weclamthat:
(i) Pisanelementary body,
(il) Qisanelementary body too,
(iii)Pc Ac Q,and
(iv) n(Q) — w(P) <e.
These properties are sufficient to conclude that A is measurable.
In fact, to prove (i) we remark that since A\ B is open, for each xe A\ B

there existsaparalleloid Py suchthat x e B, < A\B.

Let us remark that Fr (A\B) — A. In fact, on the contrary case, if
X e Fr (A\B) and x € Fr A, then we deduce that for any neighborhood V of

x we have VA (A~ CB) = 0. In addition, Vc B holds for some of these

neighborhoods (since Fr Ac B), which is impossible. Consequently, for

any y € Fr (A\B) there exists a paralleloid Py such that y € B, < A. In

conclusion, the family { B : x e A\B} U{ R, :y € F(A\B)} U{ B} isan

open cover of A. By hypothesis A is bounded, hence A is compact, so
there exists afinite subfamily

{Ryti=1 un) U{PRy 1j=1,...mu{B)

which aso covers A. In particular, removing B, this subfamily covers
P=A\B, s0 it remains to modify the paralleloids of this cover such that P
to appear as an elementary body.

(i1) isimmediate if we notethat Q =P U B.

Similarly, in (iii), A < Q isobvious, and Pc A isbased on the fact that
Fr(A\B) c A
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Finaly, for (iv) we evaluate p(Q)—u(P) = W((A\B)uB) — w(P) =
=u(PuB) — u(P) = w(B) <. &

The last two theorems have useful consequences in the study of the
measurability. For example:
1.11. Corollary. Let A be a bounded (in particular compact) setinRP,

p e N. If Fr (A) consists of a finite number of smooth images of at most

(p—1)—dimensional measurable sets, then A is measurable.
Proof. Smooth functions are Lipschitzean, hence, according to theorem 3.9,
Fr (A)is negligible. Therest is said by theorem 3.10. &

1.12. Examples. The p—dimensional ball Sx,,r) is measurable since its
boundary is smooth. Similarly, any bounded polyhedron is measurable
because its boundary consists of a finite number of (p—1)—dimensiona flat
surfaces. In particular, the parallelepipeds having faces non-paralel to the
axes are measurable too. Evaluating their measure, as well as the
preservation of the measure under isometries and other transformations,
remain more complicated problems, which will not be studied here.
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§ VII.1. Jordan’s measure

PROBLEMSS§ VII.1.

1. Show that the sub-graph of any bounded and increasing function
f:[a, b] > R ismeasurable (in Jordan's sense).
Hint. To any two elementary bodies P, P' for which P < sub-graphf < P"
there correspond two divisions ¢' and 6" of [a, b] such that for

0=0"uU 8" ={a= X< X< ..<X,= Db}

we have
n-1 n-1
V(P) < D F () (= %) < D T (Xea) (i = %) SV(P).
k=0 k=0

For sufficiently fine divisions &, when ||5|| < m, the difference

V(P")=v(P) = D[ (4s1) — F (i) (X1 = X4)
k=0
will be arbitrary small.

2. Show that even though the function f : [0,1] — R?,
(t,sin%) if te(0,1]

(0,0) ift=0
is not Lipschitzean, the image f([0,1])is negligible in R,
Hint. |[f(ty) — f(tp)|| > 1 ispossiblefor arbitrary closed t', t* < [0, 1]. For any
g > 0 there exists 1 > 0 such that f([O, n]) be included in a rectangle of area
less than . The remaining f([n, 1]) is negligible according to theorem 3.9.

f(t)=

3. Compare the measures of |=(0,1) c R and f(I) ¢ R? where
the function f : | — R? is defined by f(0.c,CC3C4...) = (0.C1Cs..., 0CC4...).
Are these non-negligible simple curvesinR®, p > 2 ?

Hint. f(1) = (0, 1) x (0, 1), and fis 1 : 1. However, if a denotes the measure
(area) in R?, we have a(l) = 0 and a(f(1)) = 1. Take y = f(1).

4. Study the measurability (in Jordan's sense) of the following sets in the
plane:

A={(xy) €[0, 1] x[0, 1] : x, ye Q}
B={(x,y) €[0, 1] x[0, 1] : X, ye R\Q}
C=AuUB,and C.

Answer. Only C is measurable.
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The notion of multiple integral will be considered for an arbitrary
dimension of the space p > 2, with particular stress on the casesp = 2 and
p = 3 of the"double" and "triple" integrals. Starting out with some practical
problems, we discuss the methods based on Darboux and Riemann sums.
2.1. Practical problems. (i) Let D be a compact domain of the plane,
bounded by a piecewise smooth curve y, and let f : D — R be a bounded

function. If we have to calculate the volume of the sub-graph of f in R, we

naturally divide the set D into measurable sub-domains Dy, k= 1, ..., n, of

areas a(Dy), and we approximate the asked volume by sums of the form
n

>, (nf[f(Dy)]) - a(Dy),

k=1

2. (sup [f(DW)]) - a(Dy), or
k=1

Y. [f(&)] - a(Dy), where & €D
k=1
In particular, the sub-domains Dy can be rectangles, which constitute
elementary bodies used in the process of obtaining the internal and externa
measure of D.
(ii) Let D < RR® be a compact set bounded by a piecewise smooth surface.

If D represents a physical body of density f, then the mass of D may be

n
approximated by sums of the form Z f(&ov(Dy), where & € Dy, and v(Dy)
k=1

is the volume of Dy. Usualy Dy are paraleepipeds with no common
interior points, in finite number, included in D.

The above sums suggest how to define the integral sums in the case of the
multiple integrals, but first we must specify some terms:
2.2. Terminology and notations. The closure of a domain (open and
connected set) is called closed domain. A bounded closed domainin R,

p € N iscaled compact domain. If D « RP is ameasurable (in Jordan's

sense) compact domain (briefly m.c.d.), then any finite family of sets,
0 ={Dy, Dy, ....,Dy}, which satisfies the conditions:
(i) each Dy, k=1, ..., nisam.c.d,

n
(i) D= U Dy,
k=1
(iii) Dy Dy =@ whenever k = |,
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§ VII.2. Multiple integrals

is caled division of D. By norm of division 6 we understand the number
I5]] = max{d(Dy) : k=1, ..., n}, whered(D\) = sup {|X-VY||l: X,y e Dy} is
the diameter of D,. Divison §" issaidto be finer than o' iff for any
D' € &' thereexists D" € 8" suchthat D' > D". If 6'and d" are divisions
of D, then
0={D'nD":D' € §'and D" € §"}

Is caled supremum of &' and 6" and it is denoted by 6 =&'v d". The
Jordan measure on RP will be denoted by .

2.3. The construction of theintegral sums. Let D — RP be a m.c.d., let
f: D — R bebounded, and let 6 = {D;, D,, ....,Dy} beadivision of D. For
each k=1, ..., nwenote m, = inff (Dy), and My = sup f (Dy). The sum

n
s(3)= >, mcu(Dy)
k=1
is caled Darboux inferior sum, while

S®)=Y MDY

k=1

Is called Darboux superior sum.
If o={&«: k=1, .. n}, where & € Dyis asystem of intermediate
points, then the sum

n
ot (8, ) = D, (&) n(Dy
k=1
Is called Riemannian sum.
Using these sums we define the "multiple” integrals:

2.4. Definition. The number | = sup s (8) (I =inf S(8)) is called Darboux

S o
inferior (superior) integral of f on D. We say that f is Darboux integrable
onDiff | = I.Insuchacase, thecommon valueis denoted by
l=l=1= Ifdu
D

and is called the multiple integral of f on D (in Darboux' sense).
We say that f isintegrable in Riemann's sense on D iff there exists

L= lim o (3, )
|]—0

and this limit is independent of the sequence of the divisions (with
I5]] — 0) and of the systems of intermediate points. If so, L is named the
Riemann multiple integral of f on D, and it is aso denoted

L= | fdu
D
This coincidence of notationsis based on the following:
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2.5. Theorem. The following assertions are equivaent:

(i) fisintegrableon D in Darboux' sense

(ii) for any € > O there exists adivision 6 such that S(6) — s(0) < ¢
(iii) fisintegrable on D in Riemann's sense.

The proof isthe same as for simple integralson R, and it will be omitted.
In particular, assertion (i) < (ii) represents the well known Darboux
criterion of integrability.

2.6. Particular cases. If p= 1, and D = [a, b] < R we recognize that

b
[ fdu = [ f()dx.
D a
In the case p = 2 we usually note

[ fdu = [[ f(x y)dxdy
D D

and we call it doubleintegral of fon D.
Similarly, when p = 3, we note

[ fdu = [[[ £ (x,y, 2)dxdydz
D D

and we nameit tripleintegral of fon D .
Even for p greater than 3 the multiple integral is sometimes written in the

form [ fdu = [..[ fdu=[...[ f (... Xp)obq...dxXp.
D D D

Using the previous theorem we obtain an important class of integrable
functions:
2.7. Theorem. Let D < R° beam.c.d.,andletf: D —» R be abounded

function. If the set A = {xeD : f isdiscontinuous at x} is negligible, then f
isintegrableon D .
Proof. The case w(D) = O istrivia, so that we'll consider u(D) > 0. For the
beginning we prove the theorem under the hypothesis A = @, when f
(continuous) on D (compact) is uniformly continuous, i.e. for any € > 0
€
u(D)
Now, if 6 = {Dy, Do, ..., Dy} isadivision of D, for which || 8|| <n, we
obtain

S@-s@) =Y (M—mJuDy= D, [f(xy)-T(x")] nDy <

=1 k=1

e n
D) =&,
u(D)E‘l WD =e

there exists 11 > 0 such that |[X' — X"|| <n implies |[f(X') — f(X")| <

<
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where the existence of X, X"k € Dy such that f(x'y) = My and f(x"¢) = my for
every k= 1, ..., n, is assured by the continuity of f on the compacts Dy.
Consequently, according to theorem 2.5, fisintegrable on D.

Finally, let us consider the general case when A = @. Since u(D) = O, for

any € >0, there exists an elementary body B, such that Ac B and

u(B) < ﬁ, where M = sup {[f()| : x € D}. The set D\ Bisam.c.d. too,

on which f is continuous, hence, as before, f isintegrableon D \ B. In other
terms, there exists a divison 5= {Dy, Dy, ..., Dy} of D\ B such that
S(5)-s(8) < 3.

Of course, 6 = 5u{DmB}~ Is a oﬂvision of D, for which we have
S(8) —s(8) = S(8)—s(38) + (Mg —me) (D NB),

where
Mg=sup{f(x): xe D n B} and mg=inf{f(x):xeD n B}.
€ €
Consequentl 0)-5(0)< - +2M— ==.
sequently &(3) — s(3) > v ¢ &

Basicly the multiple integrals have the same properties as the simple ones
(defined on compact sets from R) ones:

2.8. Proposition. The integrable functions on m.c.d. have the properties:
(i) j(af +ug)du = a Ifdu +B Igdu (linearity)
D D D

(i)  [fdu = [fdu + [ fdu, whenever D;n D, = @ (additivity relative

D,uD, D, D,

to the domains)

(iii) I f < gon D, then | fdu < [gdu (monotony).
D D

(iv) If fisintegrableon D, then | f | isaso integrable on D, and:
| [ fdu| < [ f|du (absoluteintegrability)
D D
(v) w(D)inff(D) < j fdu < w(D) sup f(D) (mean-value property)
D

The proof isdirectly based on definitions and it is omitted.
2.9. Proposition. If f is continuous on the m.c.d. D < RP, p > 1, then there

exists § € D such that j fdu = (&) w(D) (mean-value integral formula).

D
Proof. Because f is continuous on the compact D, there exists x;, X, € D
such that inff(D) = f(x;) and sup f(D) = f(x,). If we note
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1
A= ——| fdu,
u(D) [{ g
then property (v) in proposition 2.8 takes the formf(x;) < A < f(xy).
Using the fact that D is aso open and connected, there exists a
continuous curve y < D of end-points x; and x, . If ¢ : [a, b] > D isa
parameterization of y, theng=f o ¢ : [a, b] — R isalso continuous, hence

it has the Darboux' property. In particular, because
g9(a) = f(xa) <& < f(xz) = =g(b),
it followsthat there existst € [a, b] such that A = g(t) = f(§), where

& = o(t). Consequently, 1 I fdu = f(&), for some & € D. &
n(D)

2.10. Remark. Mainly there are two methods for calculating the multiple
integrals. one uses the reduction of the dimension by iteration; the other
consists in changing the variables. We will analyze the first method starting
out with the simplest case when D < RP reduces to a paralleloid P. More
exactly, we consider a Cartesian decomposition of P of the form

P = P' x P", which leads to the distinction of two components in any xe P,
namely x = (u, v), whereu = (X, ..., Xm) € P'and v = (Xn1, ..., Xp) € P" for
somel<m<p-21Iff:P —> R, then we notef(x) = f(u, v).

211 . Theorem. Let f: P — R be an integrable function on the paralleloid

P=P xP". If for each fixed ueP' thereexistsI(u) = _[f(u,v)dv,then
B
| : P —> R is an integrable function on P', and thefollowing equality

holds:

[ £09dx=[1(u)du.
P P’
Proof. By dividing each side of P' and P" into n equal parts, we obtain the
divisons &' ={P',....P',m} of P, & ={P"y,...P" o} of P", and
§={P;=PixP";i=1,..,nm j=1,..,n"" of P. Let us note
m; = mff(P.,) and Mij = sup f(Pij),

so thet for each u; € P andv; € P"; wehavem; < f (u, vj)) < M.

Because f is integrable relative to the variable v on P", it will be
integrable relative to v on P"; too, hence by integrating the above inequality
we obtain

my (P < [, v)dv< My p'(PY)

P
J
where p" is Jordan's measure on RP™.

Adding theserelationsfor al j=1,..,n""™, weobtain
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Z M) < [ = I(u)<Z My P, ()

If |sJordansmeasureon R™, |t|seas/to seethat w'(Py) (P = w(Py)
forali=1,..,n"andj=1, .., n"™ where u isthe measure on R". Let us
noteby o'= {ul,...,unm} the system of intermediate points, and let

nm
o (8, )= Iw) w(P)
i=1
be the Riemannian sums of | on P'. By multiplying the relations (*) by
w'(P5), and addi ng al the forthcoming relations, we obtain

> Y muP) <o ® )<Y Y M) (%)
i=1 j=1 i1 j-1

Now we mention that n — o implies [|8']| —» 0 and |[3"]|—» O, aswell as
|[5]] — O since ||5]|<||&'|| + [|0"]]. Consequently, because f is integrable on P,
the first and the last sums in the inequaity (**) have a common limit,

namely If*(u,v)dv, so it follows that the limit

o
lim o (&, )= [ldu,
310 b

also exists, and [ fdu = [ldy'. O

P P
2.12. Corollaries. (i) In the conditions of the above theorem we have:

[ fuvdudv= | {j f(u,v)dv}du.
P'xP" P'LP"

In particular, when f(u, v) = g(u)h(v), we can reduce the integral of fto a
product of integralsof gand h, i.e. [ fdu = { | g(u)du]{ | h(v)dv] .
P P P

(i) Interchangingu and v, if J(v) = J' f (u,v)du isintegrable on P', then
b
Ifdu = IJdu",
P P

or equivaently,

[ f(uv)dudv= | {If(u,v)dv}du
P'xP" P" LP
(i) If m=p-1,i.e. P" = [a,, by], we have

67



Chapter VII. Multiple integrals

bP
[ fdu = J| [f(uxp)dx, du,
P Pla,
and by repeating the iteration, we obtain
bl b, by
Jfdu =[] [} [ £ 00 X0 Xp)dXp.. (Ao (g .
P al a| a,

All these formulas are direct consequences of the above theorem, so they
need no proof. In particular, for double and triple integrals we have:

b b,

[[ oo yydxdy = [| [ f(x y)dy fdx,
P | a

where P = [ay, by] X [ay, by], and respectively

b,| by| by

_m f(x,y,2)dxdydz = J{ j[j f(xY, z)dz]dy]dx,

P | a,| ag
where P = [al, bl] X [az, b2] X [a3, b3]
2.13. Remark. The above formulas are rarely useful in practice because
they refer to a very particular form of the domain D, namely that of a
paralleloid. In order to extend these formulas up to an arbitrary m.c.d.
D < R?, p> 1, weintroduce the notion of "section" as a generalization of
the Cartesian decomposition of aparalleloid. More exactly, if u= (X, ..., Xm)
for somem=1, ..., p— 1isfixed, then the n—section of D is defined by

D[u] = {V=(Xm+1,.--.%p) : X= (U, V) €D}.

Pro(D) = {u=(Xy,...,.Xm) : D[U] = @}
represents the m—projection of D. Further we'll consider that the n—sections
and the m—projections of D are also m.c. domains. In particular, when
m = p — 1 we suppose that D[u] reduces to a closed interval; more exactly,
we say that D is ssimple iff there exist two functions o, y € CRl(PrlH(D))
such that D[u] = [¢(u), y(u)] for all u € Pr,4(D).
2.14. Theorem. Let D < R°, p> 1, beamcd. andletf: D — R be

integrable on D. If for each u € Pr(D) there exists |(u)= jf(u,v)dv,
D[u]

The set

then | : Pro(D) — Risintegrableand [ fdu = |1 (u)du.

D Pr..(D)
Proof. In order to reduce this theorem to theorem 2.12, let P be a
paralleloid which contains D, and let f~ : P — R be an extension of f, i.e.
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. f (X) if xeD
f(x)= . :
0 if xe P\D
Inthis situation, f isintegrableon P, and [ f"dp = [ fdu.
P D

Because in the Cartesian decomposition P = P' x P" we have P' = Pr(P)
and P' = P[u] for al u € P, theorem 2.12 takes the form

[ fdu = 1" (U)du
D P

where "(u) = [ f7(u,v)dv. Now, it remains to see that
o
() = {I (u) |'f ue Pr,(D) |
0 if ue P\Pr,(D)
and, because f " isnull outside D, we have
(W= [ f(uvdv.
D[u]
To conclude, we introduce this expression in the integral of f. &

In practice this theorem is mainly used for m= 1 and m= p — 1, when it
furnishes the principa methods of iteration:
2.15. Method | of iteration. (m= 1) Let [a,, b;] = Pry(D) be the projection
on x;—axis of D, and let us suppose that for any x € [ay, b;] there exists

1(X1) = J.D[Xl] f(Xqrenns Xp ) OXp... X

by
Then | isintegrableon [ay, by] and [ fdu = [1(x)dx . i.e
D 2
by
| T (X5, X )X ... 0X = e | T(OXq5 X0 ey X )Xo ...0X (X
IDI (Xs-+s X ) Xq....0X ‘[DD[&]I (X, X2,1001 X )Xo n} 1

al
2.16. Method | of iteration. (m=p—-1) Let D beasmple m.c.d. and let
f: D — R be an integrable function. If for any u = (X,....X,-1) € Prya(D)
the function x, — f(u, X;) is integrable on [o(u), y(u)], then the
function| : Pry1(D) — R, defined by

W (X ey Xp—l)
| (X1, Xp-1) = I F (%00 Xp1s Xp)AXp,
O(Xg5eery Xp—l)

isintegrable on Pr, 4(D), and

jD fdu = jprp_l(D) | (Xgyeeey Xpp_1)OXg.OXp 1
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e

W (X Xp )
[ £ O X)X = oo [| 0 [F (e Xpg, Xp)AXp [B...0Xp g
0 S CTCT

2.17. Remarks. (i) The above methods reduce the multiple integrals to

simple integrals with variable limits. In the case of p = 2, when D is

simple m.c.d. in the plane, methods | and |1 coincide.

(i1) The above methods of iterating the multiple integrals can be intuitively

described as techniques of "sweeping" the domain D by different sections.

For example, if D isasimple m.c.d. in the plane, then we may interpret

v(x)

the calculus of the integral 1(x) = j f (x,y)dy as finding a double integral
o(x)

on athin band B, = Ax x [¢(X), w(X)] from D (seethefigure VII.2.1).

A
y
— X
v=v ( é
©—
7
D Z
Z B
Z !
y=0 (X) i
1 1 :X
0 a X X+AX b,

Fig. VII.2.1.

Finally, to obtain the double integral, the band B, "sweeps' the domain by
amovement between a; and b;, which means to calculate

b,

J109dx =[] f(x, y)dxdy.

ay D

Similarly, we can sweep the domain using horizontal bands, if D allows.

(iii) Besides iteration, there is another technique of calculating multiple
integrals, which is based on the change of variables. The formulas are
similar to those concerning the simple integrals, but in the case of the
multiple integrals we mainly use the change of the variables in order to
transform the given domain D into a smpler one, for example into a
parallelepiped, if possible.
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The following theorem of changing the variables in a multiple integral
naturally extends the rule of changing the variable in the simple integral on
[a, b] = R. Werecall that a change of variable of theopen set A = R isa
1:1 diffeomorphism T : A — R” between A and B = T(A). As usually, we
note x = T(u) = (e1(u), ..., op(u)), where u € A. According to the local
inversion theorem, if the Jacobian of T is non-null a ug, then T realizes a
change of variablesin a neighborhood of ug .

2.18. Theorem. Let D, E « R”,pe N bemc.d., andletT: E - D bea
transformation such that:

(i) Tisall

(i) T(E)=D

(iii) det Jr(u) #0 at any ue E
If f: D - Riscontinuouson D, then

[ £09dx=[(f T)(u) |det Iy (u) | du.
D E

Proof. We may reason inductively relativeto p e N'. For p = 1 the property

reduces to the well known theorem of changing the variable in the definite
simple integral. Let us suppose that the theoremisvaiduptop=n-1> 1.
In order to prove it for p = n, we decompose the transformation T: E — D
intoT=T,oT,,whereT;: E - R"isdefined by

(Vi,o,Vn) = T1(Ug, Up,...,Un) = (Ug, @2(Us...,Up), ..., ®n(Ug,...,Un))
and T,: F = Ty(E) —» R"isdefined by
(X1, ey X)) = TaVa, Vo, wooVi) = (@0 T (Vayeei Vi), Va, <.y Vo).
It is easy to see that T, and T, satisfy conditions (i)—(iii) if T does, so the
problem reduces to prove the assertion of the theorem for T, and T».
So we claim that

[ £ 0 X0 )OO = [ (F 0 T2)(Vyen V) |t Iy (Ve Vi) Vg0V (%)
D F

Infact, if Pry(D) = [a; ,bs] according to theorem 2.14 (method I1),

b,
[f0Oydx= | [ [ REC. xn)olxl]clxz...olxn .
D DIx ]| &
By changing the variable x; in the above ssimple integra (the case p = 1)
we obtain

b, B

[ £ %) = [ F( @y, ) (W), Ko X )Py (V)W

& [0}

where @, (V1) = @10 Ty (V1 X, o), A @y ([0, B]) = [ay, by].
Because
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0 _
..... x) (V1) = 87((P1°T1 D) (Vi, X, v Xo) =det I (Va, X, .onniXe) # O,
q

where [a, B] = Pry(F) and D[x;] = F[v,] we obtain

[fO9dx= | [ J'(foTZ)(vl,...,vn)detJT2(vl,...,vn)dvlidvz...dvn:
D FIvi ] Pr(F)

J'(f 0 To)(p,-.., V) [ det Ip (V... Vi) | dvyOVs...0V,,
F

which proves (*) .
Now we note g = (f o T,)| det J, |, and we claim that

[adv=[(goT)(Uy,....un) | det Iy, (Uy,...,Un) [Uy...du, . (**)
F E

In fact, using again theorem 2.14 (method I), we can write

p
j[ jg(Vll'--aVn)dVZ...an:|dV1,

a| F[v]
where F[v;] = R™. Because the property is supposed valid for p=n -1,
we obtain

[g(vdv=
F

J. g(vl’vz’avn)dvzdvn =
Fw]

[ 90 @2(V1,Ups U)oy Oy (V1 Uy, Un)) ety (U, Un) Ul
Elu,]
where Yy, (U, .y Un) = (@2(V1, Up, ..0yUn), ooy @n(Va, Uy, ..., Up)). Consequently,
det J,, (Up, ..., Un) = det Jy (Vo Up, ...,Un) .

In fact, T, preserves the first component which implies that
[a, B] = Pr.(E), hence

fodv="[ | [(goT)(uy,Up,...,un) |det Iy (Uy,Up,..., Un) [ dUp...duy, [duy =
F Pr.(E) | E[u,]

= [(g° Ty (u) | detdr, (u) [du,
E

whichis (**) .
Finally, combining (*) and (**) we obtain :
| 1(9dx= [ g(vdv= [ (goTy)(u) | det Jr, (u) du =
D F E

= [[(f o T) o Ty](u) |det Iy (Tyu) || det Iy (u) |du =
E
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= [(f oT)(u) | det Ir (u) [du,
E

which accomplishes the proof. >

2.19. Particular_transformations. (i) The transitions to polar coordinates
in the plane

X =T cost
{y:rgnt
isatransformation T: (0, ») x [0, 27) — R?*\{(0, 0)}, for which
det Ji(r, t) = r. Consequently, for any mc.d. D < R?\ {(0, 0)} and
continuousf: D — R we have
J'J'f(x, y)dxdy = _”'f(r cost,r sint)rdrdt.
D T*(D)
(i) Similarly, passing to the cylindrical coordinates in open space
xy,2) — (r.t, 2),
X =T cost
y=rsint
z=12
represents atransformation T : (0, ) x [0, 27) x R »>R3*\{(0, 0,0)} with
det J(r,t,2) =r.
According to the previous theorem, for any mc.d. D = R®\ {(0, 0, 0)}
and any continuousf: D — R we can write
m' f (X, Y, z)dxdydz= m' f (r cost,rsint, z)rdrdtdz
D T*(D)
(iii) The spherical coordinates in space are introduced by the formulas
X = pCospsind
y=psSinesino
Z=pCoso
Considered as atransformation T : (0, ) x [0, 27) x [0, 7] — R®, with
det Jx(p, ¢, 0) = pZsin 0,
the change of variables (x, y, 2 — (p, ¢, 0) in the triple integral of a
continuous function f : D — R where D = R*\ {(0, 0, 0)} isam.c.d., is
realized by the formula

][ £ (. y, 2)dxdydz =
D

= [[[ f (pcospsing, psinpsing, p cosd) p*sinfdpdedo .
T7(D)
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2.20. Remark. The change of the variables in a multiple integral formally
reduces to the modification of the domain D, and to the replacement of the
“differentials’ according to the formula

dx;...dx, = | det Jr(uy, ...,Ug)|du;....dup.

This last equality may be considered a correspondence between the
measures of the simplest elementary bodies in the considered coordinates.
More exactly, in Cartesian coordinates uj, ..., Uy, the paralleloid of sides
AXq, ..., AX,, has the measure Ap = |det Jr(U)| AXy, ..., AX,. It is easy to see
(Fig. VI1.2.2) that in the above particular cases we have:

- Aa=rArAt for theareain polar coordinates in the plane;
- AVy = rArAtAz for the volume in cylindrical coordinates in space;
- AVgn = p?sindA pA @AB for the volume in spherical coordinates .

AZ
7+Az
Z

(@

v

Ar:At

(b)

v

Fig. VI1.2.2
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To close this paragraph we will analyze an important relation between
double integrals and line integrals of the second order, which is known in
the literature as Green's formula.

2.21. Theorem. Let y = R? be a simple, closed, piecewise smooth curve,

which bounds the compact domain D, when it is traced once counter-
clockwise. If P, Q € C,'(D), whereD = D (D isopen), and D has finite

decompositions in simple sub-domains relative to the Ox as well as relative
to the Oy axes, then the Green's formula holds:

j Pax -+ Qdy = [ (— - Ededy

Proof. It is clear that D can be decomposed into a finite number of
rectangles and sub-domains of the form D4, D,, D3 and D, as in the figure
VI11.2.3 (a) from below. Consequently it is sufficient to prove the formula
for such ssmpler domains, e.g. for D;.

Ay A y

B

2\/ Vi fmemmeneey :

Y1
D1 A l 5 \
1
D D,
Ds A I VG
v E
Y X i X
> O Xl XO -
a b
@ Fig. VI1.2.3 ®)

In fact, using thetwo equationsof y;, y = o(X), where X € [Xo, Xi],

and x = y(y), where y € [Yo, Y1], thedoubleintegral on D; becomes (see
Fig. VI1.2.3, (b))

Ry [y} de]dy-?[“"f%dy}dx_

X Yo

X
= j QU (), Y)dy - j QUxg, y)dy - _[P(X,(p(X))dX+ [P(x, yo)dx =
Y1 Y1 X X,
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= J'de+ Qdy + I Pdx + Qdy + Ide+ Qdy.
1 BM MA
The other forms of the sub-domains are similarly discussed.
By adding such formulas, the line integrals on the interval segments
cancel each other out, being calculated in opposite senses. &

2.22. Coroallary. Under the conditions concerning D in the above theorem,
the areaof D has the expression

1
a(D) == | xdy — ydx.
(D) 2{ y—y

Proof. We can consider P = —y and Q = x in the above theorem, and take

into consideration that a(D) = ” dxdy. We recognize here the formula of
D
Proposition 15, 83, Chapter VI, for more general shape of the domain. <>

To conclude this section, we mention an interesting application of the
double integrals in mechanics:
2.23. Example. A body D of constant density y is obtained from a sphere
of radius R by removing a concentric sphere of radiusr < R. We can show
that the attraction of this solid on any material point lying in the interior
sphere is null. In fact, using the spherical coordinates (p, ¢, 0), the element
of mass of D, say AM = y p°sin A p A ¢ A9, acts on the mass m with a
force of value

AF= k™M
d
where d® = p®— 2r pcosh + r%. The component along oz is
AF, = AF cos(zd) = AF P90S9=T
Consequently
2r n R 2
sinB(pcosO —r
F,=kym [ dofdo] g @ 2 %/2 p=
3 o l(p —2rpcos +r<)
R T .
kym prsind
=—2n|pd coso —r)do,
r !p p-(g(pz—2rpcosE)+r2)3"’2(p )

where the integral relative to 6 can be computed by parts. Finally F, = 0.
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PROBLEMS&VII.2

1. Depict the domains of integration and evaluate the following iterated

integras.
1 1 2 2 1
. x“d .
(i) [ax[ (ii) [ dy[ (% +2y)dx
0 olty 0 0
2 X .2 1 J1-x2
(iii) [ox | X—gy (iv) Joax [ +1-%2-ydy
1 12 Y 0 0

Answers. (i) % ; the integral breaks up into a product of simple integrals,
(i) % ; the domain is arectangle, but the function differs from a product;
(iii) % ; the function is a product g(x)h(y), but D is not arectangle;

(iv) %; D isaquarter of adisc and the integral is% from the volume of the

unit sphere.

2. Changethe order of integration in the following double integrals:

4 12x 1 1-y
(@ Jdx | f(xy)dy (b) [y [ f(xy)dx
0 3X2 0 _ l]__y2
48
Hint. (@) [dy] jj’?’; f (x,y)dx; (b) Expresstheintegral asasum.
0

3. Evaluate [[xdxdy, where D is:
D

(a) atriangle with vertices O(0, 0), A(1, 1), B(O, 1);

(b) aregion bounded by the straight line passing through the points A(2, 0)
and B(0, 2), and by the arc of acircle of center C(0, 1) and radiusr = 1.
Hint. (a) /6; (b) /6.

X

4. Cdculate [[ eYdxdy, where D is a curvilinear triangle bounded by the
D

curves of equationsy’ = x, x= 0,y = 1.
Answer. 1/2.
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5. Evauate the integra | = j j ydxdy, where D is bounded by the axis of
D

abscissas and an arc of the cycloid x = R(t —sint), y = R(1 — cost).

27R| w(X)
Hint. 1 = [ | [ydy dx, and we change the variable in the smple integral
0ol o
2nR| R(1-cost) 5
relativetox,i.e. 1= | [ ydy |R(1— cost)dt =§R3.
0 0

6. Calculatel= [[[ f(x,y,2)dxdydz if D = [0, 1]° isthe unit cube and:
D

(i) T, y, 2) = € (i) fx,y, 2) = m

Hint. (i) | isaproduct of ssimpleintegrals. (ii) Use theorem 2.11.

7. Calculatel= [[[xyzdxdydz if:
D

(i) D isatetrahedron bounded by the planesx+ y+ z=1, x=0,y=0
and z= 0.
(i) D is a region between the cone z = \/x2+y2 and the
paraboloid
z=1-X-Vy-.
1 [1-x |[1-Xx-y 1 1-x2—y?
Hint. (i) | = _[x _[ Y Izdz dy dx=%; (i) f jzdz dxdy,
0[O0 0 Pr(D) | (x?+y?

where Pro(D) = {(x,y) € R*:x*+ y* < r%}, andr = \/_57_1 Alternatively,

pass to cylindrical (or polar) coordinates.

8. Evaluatel = |[[zdxdydz, where D is bounded by the plane z= 0 and:
D

. X2 y2 72
(i) theupper half of the ellipsoid St z+—5=1L
a2 b2 c?

(ii) the pyramid [x| + |y + |2/ =1,z > 0.

Z

Hint. Use the formula of Method I, namely | = | z[ i dxdy]dz, where the
z, | D[7]

double integral represents the area of a simple section.
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9. Evauate
2 2x—x%a

() [dx [dy[z/x?+y?dz using cylindrical coordinates

0 0 O

+R JRP=x? {R*-X*-y°
@ [dx Jay (x? + y?)dz using spherical coordinates.

-R _JR-¥ 0
Answers. (i) S& : (ii) -2 xRS,
9 15

10. Passing to polar coordinates, evaluate | = H\/ a? — x? — y?dxdy, where
D

D isaloop of the lemniscate (x* + y?)* = &(x* — y?), x=0.
Hint. Draw the corresponding domain bounded by r? = a’cos2t in the plane
(r,t),t e [0, x].

2 2
11. Calculate [[ 1—X—2—y—2dxdy, extended over the region D, which is
D a® b
2y
bounded by the ellipse —2+b—2 =1.
a

Hint. Use the generalized polar coordinates (r, t), defined by

=TI cost

=rsint

Ol o |Xx

12. Evaluate | = [[(x? - y?)e®Ydxdyusing the coordinates u = x + y
[0,]x[0,]

andv=x-y.

Hint. Divide the square in the (u, v)—plane into two triangles.

13. Show that there is an infinite area between any two hyperbolas
X -y =rfand X’ —y*=r%,x> 0,r;> 0, r,> 0.
Hint. Usethe changex =r cosht,y=r sinht.

14. Identify the domains and evaluate their areas.
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X+2 arctg2 asect
(i) jdx jdy @iy [ dt [rar
-1 T 0
4
2 JaZ-y? % a(1+cost)
(i) fdy [dx (iv) [dt Jrdr
0 a-y s a
2

2 2
Answers. (i) g (i) %(n—z); (iii) g; (iv) %(ﬂ+8).

15. Find the volume of the body bounded by the xy—plane, the sphere
x>+ y?+ Z = a and the cylinder X* + y* = ax.
Hint. Independently of the use of adouble or atripleintegral, the volumeis

expressed by the integral || Ja? - x% - y2dxdy, where D is the interior of

D
thedisc x> + y? = ax. Passing to polar coordinates, when D is bounded by

r=acost, te { , 1t reducesto

I\J|
Y
|—l

acost
[ [Vaz-r2 rdr}dt——(&c 4).

I\)\?—I'—'N“:‘

16. Using the Green's formula, evaluate

| = j*/XZ“L y2dx+ y[xy+|n(x+1/x2+ yz)}jy,
Y

where v consists of the graphs of y = cos x and y = sin x for x between %
and 5r/4.

5n/ 4] sinx
Hint. | = f y2dxdy = f { jyzdy]dx.

D /4 | cosx

xdy — ydx

17. Evaluate the line integral | = | =

> where v is a circle traced n
X“+Yy
Y

times counter-clockwise, and:
a) theoriginislying outside y
b) the origin is lying inside vy .
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Hint. a) According to Green's formula, | = 0. b) The Green's formulais not
valid any more, but adirect calculation of the lineintegral gives| = 2x.

18. Find the mass and the center of gravity of the solid body bounded by
the paraboloid y* + 22 = 4x and the plane x = 3, whose density is
-1
p(X, Y,2) = (1+ XZ) .

3
Hint. ThemassisM = [ pdxdydz= | ! [”D[X] dydz}dx, where D[X] is
D

2
0l+x

an elliptic lamina of semi-axes 2+/xand +/2x, hence the double integra is
a(D[x]) = 27x+/2. The coordinates of the center of gravity are

1
= <7 [[[xo0xy, 2)dclyez,
D
and yg = Zs = 0 (because of symmetry).

19. A solid circular cone has the radius of the base equal to R, the altitude
h, and a constant density p. Find its moment of inertia relative to a diameter
of the base.

Hint. Take the plane of the base as xoy and the axis of symmetry as oz

Evauate I, = || J'D(y2+22)pdxdydz using cylindrical coordinates. The

nphR2

(2h? + 3R2).
60

resultis Il =

20. Show that the force of attraction exerted by a homogeneous sphere on
an external material point does not change if the entire mass of the sphere
IS concentrated at its center.

Hint. Let M (= gnR?' v) be the mass of the sphere of density y and radius R.

Putting the origin of the coordinates in the center of the sphere, and the
mass m on the oz-axis, a the distance L to the origin, in cylindrica
coordinates, the distance between m and the current point (r, t, z2) of the

sphere (r < R) will bed = 1/r2+(L—2)? . The dementary force has the
value AF = krrg_?v, where Av = r Ar At Az. Because of symmetry, we are
interested in finding the z—component of this force

AF,= AF cos(d,z) = AF %

Evaluating the triple integrdl, it follows that F = kmM / L2,
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8 VII.3. IMPROPER MULTIPLE INTEGRALS

Up to now we have considered multiple integrals of bounded functions
on compact domains in RP. These integrals correspond to the definite

integral on R, and they are called integrals on compact domains. Asin the
case of asimple integral on an interva of R, there are situations when we

must evaluate multiple integrals of non-bounded functions, or on
non-bounded sets. All these situations are included in the study of
integrability on non-compact sets.

3.1. Definition. Let Q < RP be a non-compact domain for which each
bounded part of the frontier is negligible. We say that a sequence (Dy)ne y

of measurable compact domains (briefly m.c.d.) is exhausting Q iff for any
compact K c Q thereexistsng € N suchthat K < D,foraln > ng.

As for arbitrary sequences of seats, we say that (Dpney IS
increasing iff D, < Dy for dl ne N.
3.2. Examples. (i) The domain Q = R® is exhausted by each of the
Sequences (Dn)nEN ! (En)nEN and (Fn)nEN of mc.d., where
Dn={(xy,2) € R®: X +y*+7Z <n?}
E.={(xy,2 e R*: |+ |y| + |2 < n}
Fa={(xy,2 € R:max{||, yl, |2} < n}
(i1) The sequence of m.c.d. (Dy)ney Of the form

Dn = {(X, y) eR?: iz < ¥ + y?* < 1} is exhausting the non-compact
n

domain Q = 50, 1) \ { (0, 0)}, which isthe unit disk without center.
(iii) In the plane (p, 0), the infinite band Q = [0, «) X [0, 2x] is exhausted
by the sequence of m.c. domains of the form

Dn= {(p, 0) €R?: 0< p <n, 0 < 0<2n}.
3.3. Definition. Let Q < RP be anon-compact domain, and let f: Q — R
be integrable on each m.c.d. D < Q. We say that f isimproperly integrable
on Q iff for every increasing sequence of m.c.d.,, (Dy)ney, Which is

exhausting Q, the sequence [ j fdy] IS convergent (see later that its
D
neN

n

limit does not depend on the particularly chosen sequence (Dp)ney). In
such a case we note
n—>ooD

and we call it improper integral of f on D. Alternatively we say that the
integral of f on Q is convergent.

lim [ fdu= [ fdu
Q

n
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§ VII.3. Improper multiple integrals

The correctness of the above definition is based on the following
property:
3.4. Proposition. If fis (improperly) integrable on Q, then Ifdu does not

Q
depend on the particular increasing and exhausting sequence of m.c.
domains (Dp)n ey, for which we calculate the limit of numerical sequence

K

Proof. Let (Dp)hey and (En)ney be two increasing sequences of m.c.

domains which exhaust Q. By hypothesis, | = lim I fdu and
n—oo Dn
J= lim [ fdu exist. The problemisto show that | = J.
n—>ooE

n

In fact, because both (D,),e and (En)ne ae increasing and exhausting,
for each n € N there existsk € N such that D, < Ex. Smilarly, for k e N
there existss m € N such that E, < D, and for m € N there exists | eN
such that D,,, ¢ E, etc. On thisway we obtain an increasing and exhausting
sequence of m.c. domains
Dic..cDhcEkcDncEc..

for which, according to the hypothesis, the sequence of integrals

[fdu,..., [fdu, [fdu, [fdu, [fdu,.

Dl Dn Ek Dm EI
IS convergent. Because this convergent sequence contains subsequences of
the convergent sequences

{jfduJ and[_[fdy] ,
D, neN Ey neN

it follows that all these sequences have the same limit, hence in particular
we obtain the designed equality | = J. &

3.5. Remarks. (i) Because R is a complete metric space, the sequence

[Ifdy] Is convergent if and only if it is fundamental. In addition,
Dy neN

because (D,)ney IS an increasing sequence, and the multiple integra is
additive relative to the domains, the above theorem may be formulated as

follows. The integral I fdu is convergent if and only if there exists an
Q
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increasing and exhaustive sequence (Dp)ney Of m.c.d., such that for
any ¢ > 0 there exists n(e) € N such that for any n > n(e) and m € N we
have | | fdu|<e.

Dy \D
(i) Taking as model the simple improper integrals, the study of the
multiple improper integrals can be done in terms of numerical series with
elements of the form I fdu . The general properties of the multiple

D \D,

integral remain valid for improper integrals:
3.6. Proposition. (i) If f,g: Q — R areimproperly integrable on Q and
a, B € R, then of + Bg isalso integrable on Q and

[(af +Bg)du=a | fdu+pB[gdu (linearity)
Q Q Q

n

(i) Let Q;, Q, and Q = Q; U Q, be non-compact domains for which

QN Q2=0.1f f:Q — Risimproperly integrable on Q; and Q, , then it
Isintegrable on Q and

[fdu = [fdu + [fdu (additivity relativeto the domains).

Q Q, Q,
Proof. (i) The same relation holds on any compact K < Q.
(i) If (Dpney and (En)ney are increasing and exhausting sequences of
m.c.d.sfor Q; and Q, , then (D, U E,) hey ISincreasing and exhausting for
Q, and

[fdu = [fdu + [ fdu
D,UE, D, E,

holdsfor al ne N. %

In particular, the convergence of improper integrals of a positive function
can be easily studied:
3.7. Theorem. (Boundedness criterion of convergence) The positive
function f : Q@ — R" isimproperly integrable if and only if there exists an

increasing and exhausting sequence (Dp)ney Of m.c.d.s for which the

sequence UD fdyj . IS bounded.
n ne

Proof. Because f is positive and (D,)ney IS increasing, it follows that the
sequence ( | 5 fduj isincreasing too, hence it is convergent if and only

neN
if it is bounded. &
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3.8. Proposition. (i) Let the functionsf, g: Q@ — R satisfy f < g. If f and

g are integrable on Q, then Ifdu < J'gdu.

Q Q
(i) If f:Q — R is improperly integrable on Q, and on some subset
Q' < Q, then the following inequality holds

[ fdu < [ fdu.
Q' Q

Proof. (i) For every measurable compact domain K — Q, we have

[fdu < [gdu.
K K
(ii) Let usconsider h: Q — R, of values,

{1 if xe Q'
h(x) =

0, ifxeQ\Q.
Of course0 < hf < fandhf=fon Q"' Because fisintegrable on Q, and
hf isintegrable on €', according to (i) we obtain [ hfdu < [ fdu.
Q Q

It remainsto seethat [hfdu = [ fdu. O

9) Q
3.9. Remark. In the case of a ssmple improper integral on domains| < R,

we have seen that | f(x)dx may be convergent without [| f(x)|dx, so it
| |
makes sense to discuss about semi-convergence, and absolute convergence.
This property has no analogue in the theory of multiple integrals. In fact,
according to the following theorem, the integrals [ fdu and [| f [du are
D D

simultaneously convergent (respectively divergent). Consequently, it is a
nonsense to speak of semi-convergent improper multiple integrals. It is not
wrong to speak of absolutely convergent integrals, but this notion coincides
with that of simple convergence.

In order forms to study the relation between "convergence”" and "absolute
convergence" for multiple integrals for arbitrary f: Q — R, we will define

the positive and the negative part of f by
1 1
f.==f|+f]; f.==[|f|-f].
2[I |+ 1] 2[I |- 1]

It is clear that both f, and f_ are positive, but smaller that | f |. In addition,
weobvioudy havef=1f, —-f_,and |f|=f, + f_ .

3.10. Theorem. Let us consider that f : Q — R isintegrable on any m.c.d.
D < Q. Thenfisimproperly integrableon Q if and only if | f] is.
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Proof. At the very beginning we mention that f is properly integrable on
any mcd. D < Qiff |f|is, so the statement of the theorem essentialy
refers to the improper integrability on the non-compact domain Q. In fact,
for arbitrary X', X" € D we have

[IFO) = 1H0X) [ ] <[f(X") = £(x)),
hence | f | has a smaller oscillation than f on any division of D. It remainsto
use the Darboux criterion of integrability.

Let us suppose that | f | isintegrable. Because f,. , f_ < | f |, according to
proposition 38, the integrability of | f | implies that of f, and f_ . Using the
property of linearity, it followsthat f isalso integrable.

Conversely, let us suppose that f is improperly integrable on Q, but | f | is
not integrable. Since | f | > O, this means that for any sequence (D), ey Of

monotonically exhausting m.c.d.sin Q, we have nIim j| f|du=+oo.

D

By rearranging the convenient indices, if necessary, we can consider that
the successiveterms D,, and D, ; are chosen so that
J1fldu>3[|f|du+2n

Dy D

for any n € N. Denoting A, = D1\ D, and using the additivity of the

multiple integral, this inequality becomes [| f [du > 2 [| f |du + 2n for

A D,
al n € N. Because f (and also [f]) is properly integrable on D,, it follows
that f, and f_ are also properly integrable, and since |f| =, + f_, we obtain

[Ifldu=[f.du+ [fdu.

A A, A,
Now let us suppose that

n

n

[f.du> [fdu. (*)
A, A,
In this case

2 [f.duz [|f]du
A, A
hence, according to the previous inequality,
[fodu> [ f[du+n.
A, D,
Now, let B, be a closed part of A, on which f. = f, such that
[f.du=[fdu.Then [fdu > [|f|du+n.
A B, B, D,
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Adding this inequality to the obviousone [ fdu >— [| f |du, we obtain

D, D,
[ fdu>n.
D,uUB,
Similarly, if instead of (*) we admit its contrary, we would obtain that
[ fdu <—n.
D,uUB,

Finally, it remains to see that (E))ney, Where E, = D, U B, is an

increasing and exhausting sequence of m.c.d., for which | _[ fdu|> n, hence
E

n

the sequence ( | fdu)ne  cannot be convergent. O

En
3.11. Remarks. (i) Because the study of the improper integrability of a
positive function (like | f |) is easier, the above theorem simplifies the
problem of convergence for the integral of functions which do not maintain
the sign.
(i) The convergence of a multiple integral is sometimes considered in the
sense of the principal value. This means that the increasing and exhausting
sequence of m.c.d. (Dy)ney consists of "spherical sets'. More exactly:

a) when Q =RP, wetake D, = {xe R": ||X|| < n}, and

b) when Q = K\ {x}, when K is a compact domain for which x5 € K,
then

Dn= K\{ xe RP: [x—Xol| <},
n

wherer ischosen in order to have S(xy, r) < K.

(1) Before calculating an improper multiple integral it is necessary to
check the convergence of the respective integral, since a particular way of
carrying out the calculation may lead to a convergent process, even though
the integral is divergent. Therefore it is advisable to use the methods of
calculating multiple integrals (iteration, change of variables, etc.) just on
compact domains, but not on the whole non-compact domain. In other
terms, the ssmple integrals, which occur when using some method of
evaluating a multiple integral, might be convergent even for non-
convergent multiple integrals.
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Chapter VII. Multiple integrals

PROBLEMSS§&VII.3

1. (i) Show that | = ”e‘(xz+ Y*)dxdy is convergent;
RZ
(i1) Evaluate | using polar coordinates;

+00
(iii)Deducethevalueof J= [ e dx.
2

Hint. Function f : R> - R, expressed by f(x, y) = e XY s positive,
hence it is sufficient to show that all the integrals

I, = ”e =Y dixdy,

are bounded, where D, = {(X, y) S R2 X+ ¥ < n’},ne N. Infact, using
polar coordinates (r, t) we obtain

n
o= 2z[e " rdr =n(l-e™") <.

(ii)1= liml,=x.
n—o

(iii) Iterating in Cartesian coordinates we obtain J? = I, hence J = /x .

2. Show that function f : R* - R, of values f(x, y) = sin (¢ + y?) is not
improperly integrable on R,
Hint. If we note
Dn={(x,y)e R?*: X+ y* < 2nr}
and

={(xy) e R?: +y* < 2nn + g},

then, for any n e N, wehave | fdu =0, while | fdu =m.
E

n n

3. Study the convergence of the integrals

dxd dxdyd
)= J.J.(x +ny - and o) = ‘m(x +)3(/y+zz)

where
Q, ={(x,y) € R?*: x*+ y?< 1},
and
Qs={(xy,2) e R®: ¥+ V" + Z>1},a € R.

88



§ VII.3. Improper multiple integrals

Hint. Both I(a) and J(a) refer to positive functions, hence we can apply
theorem 3.7. Denoting D, = {(X,y) € @, :1 <X+ y*'<n%,ne N, and
passing to polar coordinates, we obtain

n
I(a) = “-—dxdy =2 njrl‘zadr = T [p2t-0) _q],
(X +Yy ) 1 1-a
hencel(a) is convergent for a > 1, and divergent for o < 1.
Similarly, considering E,={(xy, 2) € Q3: 1< X*+ y*+ Z > n?}, where
n e N', and using spherical coordinates, we obtain

J (0,) — J‘J‘J‘ dXdde =4T|:j] 1_2ad _ 4t [n3_2a _1]
" (X2 + y2 + 72)“ lp P23 24 ’

w

hence J(a) is convergent for a >g, and divergent if a < — . The

N

casesa=1inl, anda = g in J,, must be separately discussed.

4. Study the convergence of theintegrals
dxd dxdydz
I(B) = H yz)B,andJ(B)=m(X2 4
X3

+y2+22)B’

where
Y ={(x,y) € R?: 0<x*+ y* < 1},
Y3={(xy,2) € R®: ¢+ y*+ Z< 1}

and p isareal parameter.
Hint. On any compact K, ={(X, y) € Z,: X+ yzziz}, ne N, using polar
n

coordinates, we have

dxd _
1B = [ = 2[1- 2]
W+y
hence | isconvergent for [3 <1.

Similarly, for any compact L,={(xy, 2) € Z3:X*+ y2+222i2},
n

n e N, in spherical coordinates we obtain:
dxdydz 4dn
WP = If 5= [1-n23],
L

+y?+22)P 3-28

hence J is convergent for 8 < g :
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Chapter VII. Multiple integrals

5. Test for convergence the improper double integral

| = ”Inw/x2+y2dxdy, where Q={(x,y)e R?*:0 < X+ y* < 1}.
0

Take D, = {(x, y)e @ : ¢+ Y>>} ne N, ad use pola
n

coordinates in order to obtain

”In X2 + y2dxdy = Png i 12}—>—E.
5 2(2n n 4n 2

n

6. Test for convergence the integrals:
| = j j e 4(¥*+¥*) cog(x2 + y2)dxdy, where o >0, and

J= IIIIn(x2+y +72)
(X2 + y2 + z2)

Q= {(xy, 7) e R®:0< X+ V" + 7 < 1}.

Hint. | is convergent for any a > 0, since |cos (X* + y?)| < 1. J is divergent

dxdydz, where o >0, and

forall o < g ; evauate it in spherical coordinates.

7. Test for convergence the integral [[e Y Xty

R? X2 +y?

dxdy and

evaluate it using its principal value.

X+Yy

principal valueisO.

Hint. < 2, hence we can apply the comparison criterion. The

8. Show that theintegral | = ”S'n”X +2y dxdy is divergent.
R2 X +Y
Hint. Theintegral is not “absolutely” convergent (see Theorem 3.10), i.e.
”|S|n1/x +y ldxdy o J|S|nr|d

X +y n—oo

>0 ,

However, on partlcular domains like Dn ={(x,y) € R* : X+ Yy < n},

[ 22 n
we have |, = ”sm XY ixdy = ZnJ'ﬂdr Ny
> X2 + y2 o T
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CHAPTER VIII. SURFACE INTEGRALS

The surface integrals extend the notion of double integral in the same
manner in which the line integrals extend the smple integrals on R. We

will consider only surfaces in R®, many aspects being similar for the higher

dimensional case. At the beginning, we have to analyze the notion of
surface.

§VIII.1. SURFACESIN R®,

From the mathematical point of view, the notion of surface (as well as
that of curve) reduces to a class of functions, which represent different
parameterizations. From the practical point of view, the curves and the
surfaces are particular objects (sets) in R? and R? the problem of finding

the most adequate parameterization is of capital importance in calculus.
1.1. Definition. We say that the set S « R® is a surface iff it is the image

of adomain (usually open and connected, but sometimes closed!), D < R?
through a function ¢ : D — R?, called parameterization of S, i.e. S= ¢(D).

More precisely, any parameterization is a vector function of two variables
and three components, i.e. for each (u, vy € D, we note the
parameterization by o(u, v) = (x(u, V), Y(u, V), Z(u, v)) € R® so that the
surface becomes
S={(x(u, v), y(u,v), z(u, v)) € R (u, V) €D}

Their specific classes of parameterizations describe the different types of
surfaces.
1.2. Types of surfaces. We say that the surface S is simple iff its
parameterization ¢ is 1 : 1. Smilarly, S is called smooth (continuous,
Lipschitzean, etc.) iff o € C'x3(D) (¢ € C°%3(D), ¢ € Lipg®(D), etc.).

A smooth surface S is said to be non-singular, iff the rank of the
Jacobian matrix of its parameterization ¢ is equal to two, i.e.:

%(u,v) ay(u,v) g(u,v)

rank J (U, v) = rank o ou ou =2.

X oy 0
—(u,v) —=(u,v) —(u,v
av( ) av( ) av( )
1.3. Remark. In this chapter we will consider only simple, smooth and

non-singular surfaces, which will be called regular. Because each surface
admits more parameterizations, one of the fundamental problems in the
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Chapter VIII. Surface integrals

study of surfaces is to find the intrinsic properties, i.e. those properties,
which are independent of parameterization. More exactly, a property of a
regular surface Sis considered intrinsic iff it is maintained by any change
of parameterization realized by a diffeomorphism of strict postive
Jacobian. It is clear that the precise meaning of this notion is obtained by
defining the class of "equivalent" parameterizations.

1.4. Definition. Let ¢ : D — R®and v : H — R be two parameterizations

of the same surface Sin R® We say that ¢ and y are equivalent and we
note ¢ ~ v, iff there exists a diffeomorphism T : H — D of components

{u = a(ab) ab)eh
v=p(a,b)

such that y = ¢ o T, and

@b P
DetJ = ga gg >0

(04

Z@b Pab)

a any (a, b) € H. The diffeomorphism T is aso caled change of
parameters on the surface S.
1.5. Remarks. (i) It is easy to verify that ~ isin fact an equivalence. To be
more rigorous, we identify the surface S with its class of equivaent
parameterizations.
(i) When we have a parameterization of a surface S, we consider that Sis
explicitly given. There are many practical cases when the surface is
described by a condition of the form

d(x, y,2 = 0,
which is caled implicit equation of the surface. The problem of finding an
explicit form (equation), i.e. to write (X, y, 2 = o(u, v) can be generally
solved only locally, using the implicit function theorem.
(i) A particular, but very convenient parameterization of asurface S ¢ R®

Is expressed by a function z= f(x,y). More exactly, D = Pr,,(D), and
f: D — R stands for the parameterization o(x, y) = (X, Y, f (X, ¥)).
1.6. Thetangent plane. If (up, Vo) € D, then the corresponding point
Mo= ¢(Uo, Vo) € Smay be also specified by its position vector

I =X(Uo, Vo) T + Y(Ug, Vo) ] + Z(Ug, VO)K ,

where{i’, j, k} isthe canonical base of R>.
The curve
Yu=u, = {¢(Uo, V) : (Uo, V) €D}
iIs caled curve of parameter v on S (or coordinate curve of type
u—constant). Similarly,
Yv=v, = {o(u, Vo) : (U, vp) € D}
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§ VIIL1. Surfaces in R®

is called curve of parameter u on S (respectively, curve of type v—constant).
Obviously, ¢lou, is a parameterization of Yu=u, » while ¢[p,; is a
parameterization of y,._, , where
Dluo] = {v € R : (up, V) € D}
isthe section of D at up, and similarly,
Dlvog)={ueR:(uv) € D}
isthe section of D at vp.
The vectors (which are well defined for regular surfaces)

represents the tangent vectors to the curves of coordinates u, respectively v,
at the current point (x,y, 2 = o(u, V) € S.
Since Sis non-singular, the normal vector
N=T, xTI
Is defined at any point of the surface. Using it, the tangent plane of the
surfaceisdefined by (I — 1p) L i, i.e

X=X Y-Yo Z2-9
OX oy 0z
ou ou ou
OX oy 0z
ov ov ov
Even if the vectors 1, and 1, depend on parameterization, the tangent

planeis uniquely determined at each point of aregular surface.

1.7. Proposition. The tangent plane to S a My does not depend on

parameteri zation.

Proof. Let ¢ ~ y be two parameterizations of S and let i ,(Mo) and i, (Mo)

be the vectors normal to Sat My € S, expressed by the parameterizations ¢

and y. A direct calculation shows that
Ne(Mo) = k n(Mo),

wherek = Det Jr # 0, i.e. 1i,(Mo)|| i, (Mo).

1.8. Corollary. (i) If S admits a parameterization z = f (x, y) on its

Xy—projection, then the normal to S has the components i = (—p, —q, +1),

where p = f',, and q = f',. For convenience, if the sense of i doesn’t

matter, i.e. the surface is non-orientated, then we can take i = (p, g, —-1).

(i) If Sisimplicitly defined by the equation ®(Xx, y, z) = 0, then the normal

1 (D'

: ()
takestheform i = (', @'y, ® ;) sincep =——=*,q=— — .

D', o',
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Chapter VIII. Surface integrals

The equations of the tangent plane at Mo(Xo, Yo, Zo) € Swill be
Z-2= p(x-Xo) + d(y-Yo),
respectively,
(X=X0) D'x + (Y —Yo) D'y + (2—29) @, =0.

The proof reduces to asimple calculation and will be omitted.

Another useful notion in the study of a surface is that of area, which is
introduced by the following construction:
1.9. Definition. Let Sbe aregular surface of equation z= f (X, y), where the
domain D = Pr, (S of f is a measurable compact domain (m.c.d.). To any
divison 6 ={Dy, ..., Dy} of D in m.c.d., we attach a division

%= {S S
of S, where, for al i = 1,n, we have
S={xy.f(x,y)) € S: (x,y) € D}.
In each sub-domain Dy we chooseapoint (X, Yx) € Dk, so that
Mi(% Yio f(X YK)) € S
for dl k=1, ..., n, and we note by r, the tangent plane to Sat M. In each
such tangent plane we delimitate adomain
T={(X,y,2 e mc: (X, y) € D¢, k=1, ... n.

which is measurable (i.e. it has an area) as image of a m.c.d. Dy through
Pr,, . Let a(T,) denotethe areaof T, forall k=1, ..., n.

We say that Shas an area (is measurable, etc.) iff there exists the (finite)
number

n
oo/= |im a(Ty),
||6||»ok§1 ()
which isthe same for all sequences of divisions for which |[3]| — 0, and for
al possible choices of this "intermediate” points My e S, k=1, ..., n. In
this case we note oo/= a(S), and we call it area of S,
For the evaluation of the area of a surface we mention:

1.10. Theorem. Let Sbe aregular surface for which D = PrySisam.c.d.
inR? and z= f (x, y), wheref: D — R isthe equation of S Then Shas

areaand it is expressed by the double integral
12 12
a9 = [[1+ fK +fy dxdy. (1)
D

Proof. Let ¢ be the angle between the oz axes and the normal i, at the

point My € S < S Using 6, can specify the relation between the area
a(Dy) of Dy and that of Ty, namely

a(Dy) = a(T,) cos Oy.
We may find of the value of cos 0, fromtheformula i, k = || A |||k ||cos 64,

2 2
while gives cos 0 = [1+ f, (%, i) + Ty (4, Vi) 7 foral k=1, ..., n.
Consequently,
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§ VIIL1. Surfaces in R®

D a(Ty) = Z\/1+ fx/Z(Xk,Yk)Jr fy/Z(Xklyk) -a(Dy)
k=1 k=1

has the form of a Riemannian sum of a double integral on D, as mentioned
in the theorem. The existence of this integral is assured by theorem 7, 82,
chapter VII, since f has continuous partial derivatives on D, and D is a
m.c.d.

The area of a surface may be expressed by other formulas which make
use of some specific notations. More exactly, if ¢ : H —» R®is a

parameterization of S of components x(u, v), y(u, v), z(u, v), and if we note
_ D2 5_D(zX _ D(xY)
D(uv) D@u,v)’ D(u,Vv)
then the normal becomes i = Al + B +Ck , and
IFy x|l = VA2 + B2 +C2
holds at any point M € S,
Other useful notations are the Gauss coefficients:

2 2 2
2 (oXx 0z
-5 (3 (3
ou ou ou

F: FU'FV:%%-’_@@-’_g%
ouov oOuov oOuov

B P 2 2 P 2
o-k-(2](3 (2

A direct computation showsthat A’ + B®+C? = EG — F2,
1.11. Corollary. Let S be a smooth surface for which D = Pr,/(S) is a
m.c.d., and let z = f(x, y) be the equation of S If ¢ : H —» R®is another

parameterization of S then the following formulas hold:
a(9) = [+ A2 + B2 + C2dudv )

H
a9 = [[lIF, <7, | dudv ©)
H

a9 = [[VEG - F2dudv (4)
H

Proof. Let T: H — D be atransformation (diffeomorphism) of components
= o(u, v) and y = B(u, v), which relates the parameterizations. More
exactly, (x, ¥, 2 = ¢(u, v) means
x=o(u,V)
y=pB(u,v)
z= f(a(u,v),p(u,v))
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Chapter VIII. Surface integrals

for dl (u, v) € H. Using the partial derivatives of z,
oz 'y / 80{ i/ ap
ou ou fy ou
0z / (906 ; OP

= fy +fy —
v o oV

we obtain f,/ :é, and 1, :gf'y. Changing the variables (x, y) — (u, V)

in (1) we obtain

a(S) = ”Ju 1%+ 1,7 dxay = ”\/A2+BZ+C2-éDetJT dudv,
D E

which represents (2), since C = Det Jt.
Formula (3) isasimple transformation of (2) because
F,xf, = Al +B]+Ck.
Findly, (4) follows from (3) as a consequence of the identity

= =12 — e 121 112 = =12
”ruxrv” - ”ru” ”rv” _[ru rv] . <>

More than the equivalence of the formulas (1), (2), (3) and (4), the area of
a surface is an intrinsic characteristic of the surface, i.e. it is the same for
al equivalent parameterizations.
1.12. Theorem. If Sis aregular surface which has a parameterization on
the m.c.d. D = Pry(S), then any other equivalent parameterization of S
gives the same valuefor theareaof S
Proof. Let ¢ : H - R%®and y : L — R® be equivalent parameterizations of

the regular surface S, of components
o(u, v) = (X(u, v), y(u, v), z(u, v)), and
y(@ b)=(X(ab), Y(ab), Z(a b)),
and let A, B, C, respectively A, B, C bethe corresponding coefficients.
According to the above corollary, both double integrals
[[/A2 + B2 + C?dudv, and
H

[[+/A2 + B2 + C2dadb
L

represent the same

2 2
a9 = ”Ju f + ) dxdy.
We mention that the proof could be based on therelations A = AA;

B = BA; C = CA, where A = Det Jy, and V : L — H isadiffeomorphism
which realizes the change of parameters (a, b) — (u, v). &
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PROBLEMS§VIII.1.

1. Find the area of the triangle cut out by the coordinate planes from the

plane X, Y1 Z%_1 wherea b, c e R

a b c

X
<

Hint. The xy—projection of Sin D ={(x, y) € R?: x >0, y>0—+b§1}
a

and the equation of the surface hasthe form z = f(x, y), where
X
f(x,y) = c(1- = — 2).
a b

2 2
Consequently, a(S) = ”\/l+ f +f) dxdy = %\/ a2b2 +b%c? + c2a? .
D

2. Compute the area of the helicoida surface of polar equations
X =T cost

y=rsint, 0<t< = ,0<a<r<b whereabkeR,.

T
2
Hint. Prxy(S) ={(x,y) eR*: &< X¥*+ y* < b?, x >0,y >0}. Evauate the
double integral which represents the area in polar coordinates.

3. Let ¢ bethecylinder of equation X* + y* = ax, and let &/ be the sphere
of equation X% + y* + 7 = &% Evaluate thearea a(S) if:

(i) Sisthat part of ¢ whichiscut out by &

(ii) Sisthe part of &’ inside ¢ .

Hint. (i) Consider y=f(x,2) on Pr(9) ={(x, 2) € R*:0< x*+ Z< a x> 0}.

(i) Take z= (X, y) on Pry(9 = {(x, ) eR?: (x— (a/2))*+y?*< a?/4} .

4. Calculate the area of the torus obtained by rotating the circle of center
(R, 0,0) and radius r, where O < r < R, lying in the xoy—plane, around the
oy—axis.

Hint. Sistheimage of D = {(u, V) € R*: 0 < u, v < 2x} through ¢ of
components x = (R+ rcosu)cosv,y=r sinu, and z= (R+ rcosu)sin v,
hence || F, xF, || = r(R+ rcosu), and a(S) = 4 n°Rr.

5. Compare the areas of the parts of a paraboloid x* + y* = 2az (circular)

and x* — y? = 2az (hyperbolic), cut out by the cylinder x* + y*= R%.
Hint. Use polar coordinates. The areas are equal.
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Chapter VIII. Surface integrals

6. Findthe areaof an elipsoid of half axesa, b, c.
Hint. S= (D), where D={(u,v) eR?:u e [0, ], v € [0, 2]}, and
¢o(u,v) =(asinucosv, bsinucosyv, c cosu). Usethe formula

a(s = ”\/AZ + B2 + C2dudv.
D

7. (Schwartz's example) Let S be the lateral surface of a cylinder of
radius r and dtitude h. By dividing h into n® equa parts, n € N, using

planes parallel to the bases, we obtain n®+ 1circlesCy, Cy, ...,C,2 0n' S On
Co we consider 2n equidistant points. The generators corresponding to
these points meet the other circlesin 2n points denoted with similar indices.
Now, from each circle C, we delete the points with even indicesif k is odd,
and the points with odd indices if k is even. Each pair of remaining
successive points on the same circle and the closest point of a neighboring
circle determine a triangle A. Evaluate the area a(A), show that the sum of
al these areas tends to o when n — o, and explain why this sum does
not approximate a(S) .

Hint. There are 2u-u® = 2u”* such triangles of areas

2
a(A) = 1 2(sin®)r. r2(1-cos™)2 + (ﬂj >kn=3
2 n n n3

for some k > 0. The explanation consists in making evident the different
directions of the normal vectors to A and to S(see aso [NS] val. I1).
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Similarly to the line integrals of the first type, the surface integral of the
first type refers to scalar functions defined on domains, which contain the
surface. They are useful in evaluating the mass of a lamina, its gravity
center, inertia moments, or forces of interaction.

2.1. The construction of the integral sums. Let S be a regular surface of
parameterization ¢: D - R? whereD isam.c.d. inR% LetdsoU: Q >R

be a bounded scalar function, where  is adomain in R® which contains S
(it is sometimes sufficient toask U : S — R, as for example when U is the
dengity of the material surface ). If 6 = {Dy, ..., Dy} is a partition of D,

then we consider the subsequent partition 25 = {S,, ..., S} of S and a
system o' = {My e &: k=1, ..., n} of "intermediate” points, exactly as for
evaluating the area of S. Then the sums

n
ou (8, &)= 2, UM aS)
k=1
represent the integral sums of thefirst type of U on S.
2.2. Definition. We say that U isintegrable on Siff there exists (finite)

= lim oy(3, &),
I3]0

independently of the sequence of divisons for which |[5|| — 0, and
independently of the systems of intermediate points. More exactly, for any
g > 0, there exists > 0 such that

lou(d, &) —1]<e
holds whenever ||6|| < m, and for arbitrary &/. In this case we say that | is
the surface integral of U (of thefirst type), and we note

| = ”U (x,y,2)dS,

or aternatively
| = [Juds=[[udu, etc.
S S

One of the fundamental problems is to specify classes of integrable
functions, and methods of evaluating the integrals.
2.3. Theorem. Let Sbe aregular surface, and U : S — R be a continuous

function. Then, U isintegrable on S, i.e. there exists the surface integral of
thefirst typeof Uon S and

[Juds=[[wu o @)(u,V)y/ A2(u,v) + B2(u,v) + C2(u,v) dudv (1)

S D
where ¢ : D — R®isaparameterization of S
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Chapter VIII. Surface integrals

Proof. Because D isam.c.d. and V= (U o ¢)v A2 + B2 + C2 iscontinuous,
there exists the double integral in the right side of the claimed relation. Let
0 ={Dy, ..., Dy} be adivision of D. Using the mean-value theorem for
double integrals we obtain
a(s) = ”\/AZ + B2 +C2dudv =
Dk
= A2 (T, W) + B2 (T, %) + C2 (T i )a( Dy )

where (Uy,Vi) € Dy Conseguently, considering an arbitrary system of
intermediate points & = { o(uy, W) : k=1, ..., n}, the integral sums take
the form

ou(®, )= > U(e(u, vi))a(S) =
k=1

= > (U 0)(U W) A (T, Vi) + B2 (T, Vi) + C2 (i, % )a(Dy.)
k=1
On the other hand, since V isintegrable on D, for every ¢ >0 there
exists 1> 0 such that for |[8]| <m, and for arbitrary </ we have

n

(U o 9)(u, v )a(Dy)
k=

HVdudv -
D

€
<—.
2

Now, we can evaluate
n

(U o 9)(uy, v )a(Dy)
k=l

| ”Vdudv —oy(§, F) | < N
D

f f Vdudv —
D

D (U o)(ug,v)a(Dy)— D (U o ) (Ui, ViV A2 + B2 + C2 (T, %)
k=1 k=1

+ <E.

The last modulus is less than % since |U o ¢| is bounded on D, and

VA2 + B2 +C2 jsuniformly continuouson D . &

When defining the integral sums, the values of U on S and the areas of
the surfaces S do not depend on parameterizations, hence the surface
integral is uniquely defined by Sand U. In fact:

2.4. Corollary. The surface integral of the first type does not depend on
parameteri zation.
Proof. Let v : H—>R? be another parameterization of S in the above

theorem, and let T: H — D be the diffeomorphism for which y = @oT.
Changing the variables (u, v) = T(a, b) in the double integra (1), we
obtain
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[[uds= [ cgoT)(a,b)N A2+ B2 +C?(a,b) dadb.
S H
Because A =AA, B = BA, C = CA, where A = Det Jr(a, b), we obtain

[Juds=[[1U - w)VAZ + B2 + C?](a,b) dadb,
S H

I.e. different equivalent parameterizations of the surface give the same
value of the surface integral of the first type. &

2.5. Corollary. Using the notations in § VI11.1, the surface integral can be
expressed by the formula

[Juds=[[U(xy, f(x, y))y1+ p2 +q2dxdy, ()
S D

where z= f(x,y) istheequationof Sf:D —» R,p= fX/, q= fy/. Other
forms of the same integral are
JJuds=[[lU@)IIf, <, l1(u.V) dudv,and  (3)

S D
”UdS: ”[(U ° (P)\/ﬁ](mv) dudv. (4)
S D

In fact, according to 8 V111.1, where we have expressed the element of area
in severa forms, we have seen that

J1+p2+q2 =VAZ +B2+C% = ||F, xT, || =VEG—F2 .

2.6. Remark. So far, we have used the xy—projection to study the surfaces
and the surface integrals of the first type. Similar results may be obtained
for yz, or zx—projections. In practice, we can divide the given surface into a
finite number of surfaces, which admit such projections. This
decomposition is frequently necessary if the equation of the surface is
implicit.

The general properties of the first type surface integrals are common to
other types of integrals, namely.
2.7. Proposition. The surface integral of thefirst typeis:
(i) linear relative to the function, i.e.

[[(@U +pV)ds=affuds+B|[vds;

(i1) additiverel ativevto the surface, i.e.
[[ uds={fuds+ [[uds,

SIS, S S,
where S;, S are regular surfaces without common interior points.
The proof is a simple reduction to the similar properties of the double
integral, and will be omitted.
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Chapter VIII. Surface integrals

PROBLEMSS§VIII.2

1. Evaluate the surface integral
| = J'J'(x+ y+2)dS
S

where Sisthe surfaceof thecube0 < x<1,0<y<1,0<z<1.
Hint. The integral on thefacesz= 0 and z= 1, where dS= dxdy reduces to

11 11 11
”(x+ y)dxdy+”(x+ y+1)dxdy:”(2x+ 2y +1)dxdy = 3.
00 00 00

Similarly, we treat the other pairs of faces, sothat | = 9.

2. Evaluate theintegral [[(xy + yz+ 2¢)dS, where Sis that part of the cone
S

z=+/x>+ y2 , CUt out by the surface X2 + y2 = 2ax.
64v2 4

Answer.
15

2+y2

3. Find the mass of a material surface Sof equation z= X , 0<z<1,

which hasthe local density p(x,y,z)=z.
Answer. i—g(l+ 6+/3).

4. Evaluate the moment of inertia of a spherical surface of radius r and of
constant density p, relative to a diameter.

Hint. | = pII(X2+y2)dS:pgnr4. The spherical coordinates are
Q

-

Y
advisable, since v A2 + B2 +C2 = r’sin6, and | = 2xrp [sin30do.
0

5. Calculate the moment of inertia, relative to the xOy plane, of that part of
the conic surface z=+/x%+ y2 , for which 0<z<1, if the local density is
p(X,y,2)=1+xy.

Hint. By definition, 1,0, = | [Szz(1+ xy)ds=v2[[ (X% + y?)(1+ xy) dxdy,

w2

where D ={(x,y) e R*: x* + y* <1}. Theresult is | o, =
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§ VIII.2. First type surface integrals

6. Find the attraction force exerted by an uniform spherical surface on a
point-wise mass mlocated in the interior (exterior) of the sphere.

. zZ-r : :
Hint. F, = km dS, where (0, O, r) is the location
L p'g[x2+y2+(z—r)2]3’2 ( )

of m, p is the density of S and k is depending on units. Using the spherical
coordinates x= Rsnfcosp, y=RsnOsnge, z= Rcost, whereRis
the radius of the sphere, we obtain F, = 2zkm p[R’l — rR%J], and

| = T cos0sing 2
o[R? —2rRcosf +r2]3/2 R2(R%-r?2)

(by parts), and

sing 46 = 2
[R? — 2rRcos0 +r2]3/2 R(RZ2-r2)
Consequently, F, = 0. Because of symmetry, we have F, = F, =0 too.

J=

O —

7. Find the potential created at (0, O, 0) by an electric change of density p(X,

y,2) =2 —L, distributed on a conical surface of equation
X2 + y2
0<z=a-+x2+y?%,a>0.

Hint. The potential is @ = k|| p(x,y,2)dS

S X2 +y2+z
particular, dS = /2 dxdy. The surface integral can be reduced to a double
integral on D = Pr,(S), which can be easily evaluated in polar coordinates.
The searched potential is® = 0.

, Where k depends on units. In
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8 VII1.3. SECOND TYPE SURFACE INTEGRALS

In this section we study the surface integral of a vector function, which
defined on the surface. In order to explain the meaning of this integral, we
start out with an example:

3.1. Example. (The flux of an incompressible liquid through a surface) Let
us consider that the domain ©2 = R*isfull of liquid, which isin stationary
movement. To describe this movement we use the so-called vector field of

speeds, V : Q2 — R, which defines the velocity

\ (X’ Y, Z) = (V]_(X, Y Z)’ V2(X, Y Z)’ V3(X’ Y, Z))

at each point (X, y,2) € 2 (not depending on time since the movement is
stationary). Now let S — Q be a (regular) surface, for which we need to
determine the quantity of liquid, which is passing over the surface in the
unit of time (also called flux). Obvioudy, evaluating this quantity supposes
a sense of the normal vector at each point of the surface, such that
specifying what "comes in" and what "goes out" to be possible (see the
orientated surfaces below).

a(Ty) cos o
= (Tw) K

a(Ty) cosyk

Fig. VIII.3.1.
If we refer to asmall part S, — S, or to its corresponding approximation

T, of the tangent plane n, at My € S, the seek quantity is contained in the
volume v, of aparallelepiped of basis T, and side V (M).
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§ VIII.3. Second type surface integrals

More exactly (seeFig. VI11.3.1), since i (My) L =y, we have
Vi = <V (My), n(My)> area(Ty) = (V- 1) (Mi) a (Ty).
If S is an element of the partition 6 = {S,, ...,S} of S and My € S isan
intermediate point of the system & ={ My, ..., My}, then

n n
V(S, ) = D v =D (V-f)(My)a(Ty)
k=1 k=1
represents an approximation of the sought volume. Further on, if
A=cosai +cosp | +cosyk
is the unit normal, then we can explicit the scalar product (V - i), and we
obtain

n
V(3, &) = Y (Vycosa +V, cos B +Vz cosy)(M)a(Ty) =
k=1

n
= > MM)a(Pry,(T)) + Vo (M )aPry (Ty)) + V(M )a(Pryy (Ty )]
k=1
Because generally speaking, better approximations correspond to finer
partitions of the surface, it is natural to define the flux of V through Sas

v= lim v(5, &).
ll5]—0

This example shows that before defining the general notion of surface
integral of second type, we must clarify the meaning of orientation on a
surface (compare to the orientation of acurvein 8 VI.1).

3.2. Orientated surfaces. As usualy, an explicit writing of the above
formulas supposes some parameterization ¢ : D — R®of S, when D ¢ R?

IS a measurable compact domain of the plane. According to the definitions
in§ VIII.1, Sisregular meansthat ¢ is1: 1, of class C*, and rank J,=20n
D. More exactly, S is defined by a class of such equivaent
parameterizations, where ¢ ~ y denotes the existence of a diffeomorphism
T between the domains of ¢ and y such that Det J; # 0. Consequently,
either Det J1> 0, or Det J1< 0O, i.e. the class of all parameterizations can be
split into two subclasses, each of them consisting of those
parameterizations which are related by a "positive" diffeomorphism (Det J¢
> 0). To orientate the surface S means to chose one of these subclasses of
parameterizations as defining the positive sense of the normal at each point
of S These considerations are based on the following:

3.3. Proposition. Let ¢ : D — R%®and y : E — R® be parameterizations of
theregular surface S andlet T: E — D be adiffeomorphism for which
y=¢ o T.If iy(M)and i, (M) represent the unit normal vectorsat M €S,
corresponding to these parameterizations, then we have:

(i) ny(M)=n,(M)if DetIr> O (T ispositive)

(i) ny(M)=-n,(M)if DetJr< O (T isnegative)
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Chapter VIII. Surface integrals

Proof. Let A, (M), B, (M), C, (M) and A, (M), B, (M), C, (M) be the
differential coefficients corresponding to the parameterizations ¢ and v, at
the current point M € S Consequently, the unit normal vectors, which
correspond to these parameterizations, are

_ Aol + By j+Cy
2 2 2
\/A(p + B(p + C(p

B i +B,]+C,k
Ay = B HOK

R +B2+C
Similarly to theorem 12 in 81 (chapter VIII), from y = ¢ o T we deduce
A, =A,A B,=B,A, and C, = C,A, where A =Det Jr. &

—

K
(M)

A o(M)

34._Examples. 1) If S admits a parameterization z = f(x, y) on the
projection D=Pr,(S), then usually, the positive sense of the normal is that

for which the angle between oz (i.e. k) and fi isin theinterval [0, g].

2) If Sisclosed, then it divides the space into two parts, namely the interior
and the exterior of S. The positive sense of the normal is usually chosen
outwards. (However, the exact meaning of orientation and closeness is
obtained in much deeper theories, e.g. see[SL], [Cl], etc.).

3) When referred to the vectors 1, and 1,,, i is orientated according to the

right-hand screw rule: by rotating the hand of the screw from 1, to 1, the

screw is driven in the positive sense of fi. In this way the orientation of D
iscarriedto S

4) The orientation on S can be referred to the particular sense, which is
defined on the frontier of S In this case we apply the same right-hand
screw rule.

5) As an example of non-orientated surface we mention the famous M 6bius
strip. It is obtained from a plane rectangle of sides| and L, where I<<L, by
gluing the smaller sides cross-wide (as sketched in Fig. V111.3.2).

A=D
A C A
| _—
B L D B
a) . b)
Fig. VII1.3.2

The resulting surface allows no 1:1 parameterization. The coordinates of
any point depend on the "face" on which the point is lying, even though we
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§ VIII.3. Second type surface integrals

can pass from one face to another without touching the boundary.
Therefore we cannot specify a positive sense of the normal at any point of
the surface, i.e. the Mdbius strip is not orientated.

The surface integral of the second type is defined by analogy to the above
notion of flux through an orientated surface:
35. The integral sums. Let V: Q — R® be a vector function on the
domain 2 c R? and let S « Q2 be a regular orientated surface of
parameterization ¢ : D — R® where D < R? is a measurable compact
domain (m.c.d). If 6 = {Dy, ...,Dy} is a partition of D, the corresponding
division X5 = {S,, ..., S} of Sconsists of parts S = ¢(Dy) < S Choosing
My e Sconeach S, k=1, ..., n, we obtain a system of intermediate points
o ={M: k=1, ..., n}. Let m, be the tangent plane at M to S, and let Ty be
the projection of Sconm, k= 1,..., n. Thesum

0\7,8( d, (399) =

=2 MM )a(Pry, (i) +Va (M) a(Pra (Ti)) +Va (M )aPryy (Ti))]
k=1

is called surface integral sum of second type of V on S
3.6. Definition. We say that V is integrable on S iff the above surface
integral sums of second type have alimit

= e Vs> )

which is independent of the sequence of divisions with ||5]|]— O, and of the
choice of intermediate points. In this case we note
| = [[Vidydz+V,dzax+Vzdxdy,
S
and we say that | is the surface integral of the second type of Von S also
called theflux of V through S.

The following theorem indicates a class of integrable functions.
3.7.Theorem. Let Sc Q2 be a regular orientated surface, and let
V:Q — R*beavector function. If V iscontinuous on S, then:

(i) V isintegrableon S, and
(i1) its surface integral (of the second type) reduces to a surface integral of
the first type according to the formula

[[Vidydz +V,dzdx+Vzdxdy= [[V-fidS.

S S
Proof. Because V and fi are continuous on S, theorem 3 in §VI11.2 assures
the existence of the surface integral of the first type

I=”\7-ﬁd8.
<
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Chapter VIII. Surface integrals

Consequently, the problem reduces to show that for any € > O there exists
n > 0 such that for any partition 6 and <, for which ||6|| <m, we have

|c\7,s(6,o§7’)—l | <e.

In fact, because V -fi is continuous there exists A = sup|V -fi|. In
S

addition, since Sis measurable, there exists 1; > 0 such that

Z[a(Tk) a(S)]

k=1
holds for any division 6 = {Dy, ..., D} for which |[5] < n;. Consequently,
for such divisions we have

| oy s(8, &) = oy 5(3, <“9’)|<ZI(V n(My) [laTy) - a(Sk)I<— (*)

k=1
On the other hand, since V -fi is integrable on S, there exists 1, > 0 such
that for ||0]| < n,, we have

, &
| owms(d &)=< (**)

Combining (*) and (**) , for || 8| <n = min{ ng, N2}, we obtain
oy (8, 57) ~1]<s,

with accomplishes the proof. &

<_

3.8. Corallary. The surface integral of the second type does not depend on
parameterization (as long as we present the orientation).

Proof. According to corollary 4 in 8 VI11.2, the surface integral of first type
Is independent of parameterization. Restricting to positive diffeomorphisms
of the orientated surface S i is aso an invariant of the surface, hence the
integralsin 3.7(ii) from above do not depend on parameteri zation. &

3.9. Proposition. The surface integral of the second order has the
properties:
(i) ”(ocV+BW) AdS= a”V ndS+B”W AdS (linearity)

(ii) HV AdS = ”V ndS + ”V ndS (additivity), whenever S; and
SVS, S S,

S have at most frontier common points

(i) [[V-fds=- ”V fAdS (orientation) where S is the contrary
e

orientated surface (of normal —ii).

Proof. (i) and (ii) are consequences of proposition 7, 82. Property (iii)

simply followsfrom V (—f)=-V -f, and (i) . >
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§ VIII.3. Second type surface integrals

3.10. Remark. Using parameterizations, we may reduce formula (ii) from
theorem 3.7 to several double integrals as follows:

[[V-Ads = [[(ViA+V,B+V5C)dudv=[[V - (T, xT;,)dudv=
S D D

= H (-Vip—Voq+V3)dxdy.
Pry (S)
Obviously, these formulas correspond to different forms of the expression
of the normal i, and that of the elementary area dS.
3.11. Example. Let us evaluate the integral

| = ” xzdydz + yzdzdx + (x2 + yz)dxdy,
S
where S denotes the upwards orientated surface of equation z= x° + y?,

restricted to the condition z<1.
We may start by writing the normal vector, for example in the form
A= 1 (=2xi —2yj +K).
J1+4x2 + 4y?
Consequently, we may reduce the problem to a surface integral of the
first type, i.e.
| = L
s \1+4x2 + 4y
Further on, thisintegral reducesto a double one by replacing dS, e.g.
| = ” (1- 2x% — 2y2)(x2 + yz)dxdy,

5 [— 2x°7 - 2y22+ (x2 + yz)]dS.

D
where D ={(Xx,y): X2 + y2 <1} . Using polar coordinates, we easily obtain
theresult 1 = - %

6
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PROBLEMSS§VIII.3

1. Evaluate | = [[ yzdydz+ xzdzdx+ xydxdy, when Sis the external side of
Q

the tetrahedron k;ounded by the planes of equations x=0, y=0, z= 0,
andx+y+z=a>0.

aj a-y
Hint. The integral on the side x = 0 reduces to I [y I zdz]dy, etc. For the
o o0
1
J3
integral can be expressed as an integral of thefirst type

%J'J'(yz+ Xz + xy)dS.
S,

side S, of equation x + y + z = a we have i=——(i + | +Kk), hence the

2. Find the flux of the vector function V. (4, y%, Z) through the sphere
(x—a)’+ (y-b)’+ (z-¢)’=R.
Hint. ® = J' J'Vldydz+V2dzdx+V3dxdy. In particular,

S

ﬁ:%(x— a,y—b,z-c),
hence ® reduces to a surface integral of thefirst type

= %”[XZ(X— a) + y?(y-b) + z2(z-c)|dsS.

Using spherical cooFdi nates is advisable, since dS= R?sind dode, and

= %nR3(a+ b+c).

3. Evaluate | = [[zdxdy, where S is the external side of the llipsoid
S
2 y2 2
Xs yc  z¢ :
22 + oZ + i 1, and interpret the result.
Hint. Using the parametric equations of the ellipsoid
X=asnbcosp, y=bsnosne, z=ccoso,
we obtain
A =(bcsin’0 cosp,a csin®0sing,absin® coso),
hence
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T
| = [[ ccosabsin® cosbded 6 = 2nalc | cos’ bsin 6d 6 = 4—3“abc.
D 0

4. Evaluate! = [ dydz  dzox  dxdy | e Sisthe exterior side of the
e X y z

Lo x2 y?2 22

ellipsoid ¥+é+c_2:1'

Hint. | is apparently improper since X, y, z can be zero on S but if we
introduce the parametric equation of the elipsoid (as above), it becomes a

definite double integral: | = 47{E+% + a—bj.
a C

5. Let Sbe aclosed regular surface, which bounds a measurable domain
0, such that each paralel to ox, oy, 0z axis meets S a most two times.
Show that the volume of 2 isgiven by

v(Q2) = %” xdydz + ydzdx + zdxdy.
c

Hint. () = [[ zdxdy, since S= S US,, where

Q

-

S={xy,2:z=1f(xy), (X y) € D}
S={(xy,2:z=1f(xy), (X y) € D},
and D = Pr(9).

Supposing f; > f,, and taking into consideration the orientation,
[[ zdxdy = [[ fydxdy — [] fodxdy.
S D D

-

Similarly, we treat the other projections (see also problem 3).
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8 VIII.4. INTEGRAL FORMULAS

Our purpose in this section is to establish relations between line, surface,
and multiple integrals in R®. A similar relation between line and double
integral in R? we aready have discussed in theorem 21, §2, chapter VII,
where we have proved the Green integral formula

_[de+Qdy H(——EJd xdy .

A characteristic of these formulas consists in some specific restrictions on
the considered domain and its frontier, which will be included in the
following definition:

4.1. Definition. We say that the domain @ < R®isregular iff it satisfies
the conditions:

(i) 9 isameasurable compact domain (m.c.d.)

(i) @ isafinite union of simple sub-domains relative to all axes (i.e. any
line parallel to ox, oy or 0z meets the frontier Sof &/ at most two times),
without common interior points.

(iii) S= Fr(¥) isaregular, closed and orientated surface.

For regular domains the triple integra may be expressed by a surface
integral of the second type as follows:

4.2. Theorem. (Gauss-Ostrogradski formula) If @ < R® is a regular

domain of frontier S, and V e C.'(¥) is a vector function of components
V11 V21 V31 then

_[ _[ J ( A av2 6\23 JdXdde = _[Q_[Vldydz +V,dzdX + Vdxdy .

Proof. If 9 @ )1V .. U D, as above, it is sufficient to prove the
formulafor &, k= 1, ..., n. More exactly, we can show only that

I I I Vs dxdydz— ”V3dxdy,
% Fr(%)
because adding the similar formulas for V, and V, on all &, k=1, ..., n
we obtain the claimed formula.
In fact, since &/ is simple relative to oz axes, there exist

fi, Oc: Pry(2 ) — R such that

D={(%¥,2 € R:fx,y) <2< gfx, ¥), (X, Y) € Pro(Z )}
By iterating the triple integral on &/ we obtain
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§ VIIL.4. Integral formulas

o[ | Yo oy

Pry (%) f(x.y)
”[VS(X’ Y, Ok (X, ¥)) =Va(X, Y, fi (X, y))]dxdy =
Pry (%)
= ” Vadxdy — fngdxdy,
where
Sa={(x ¥, € R*:2= fx,y), (x Y) € Pro(7
and

S&,Z - {(X, Y Z) e R 3: Z= gk(x’ y)! (X’ y) € Per(@ k)}

The sign "-" a S, shows that the positive sense of the normal is
opposite to the usua one (in accordance with the sense of the oz axes).
Using the orientation of the surface integral of the second type relative to
the normal, we may remark that S, = S.; U S isthe frontier surface of 7,
hence we have

[T 2 etz - j [Vadxdy.
9
Similarly we treat the otiler integrals. &

4.3. Remark. (i) Expressing the surface integral in Gauss-Ostrogradski
formula by a surfaceintegra of the first type we obtain

oV, oV, oV Y
m( 1,2, ZSdedydz=_[Q_[V-ndS,

where the last integral repr&ents the flux of V through S. The triple
integral can also be simplified if we define the divergence of V as
divv= M, No | Vs
ox oy o0z
In this case the Gauss-Ostrogradski formulatakes the form
”IleV dxdydz = ”V nds,

also called the flux—dlvergence formula. It Is very useful in field theory by
its remarkable consequences (see the next chapter).

(if) The other important integral formula relates line and surface integrals
involving the notion of rotation. Therefore we recall (see definition 11, 83,

chapter V1) that the rotation of V = (Vy, V,, V3) € Cﬂlais () isdefined by

otV = | N Vo r+(%_%);+ Ny M
oy 0z 0z OX oX oYy
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i ] k
0 0 O

oX oy 0z
Vi Vo V3

There are also necessary some regularity conditions for the surface.

4.4. Definition. We say that surface Sis explicit relative to z iff there exists
an open set O = R? afunctionf e C3(0), andam.c.d. D = O such that
S={(x,y,2 eR*: z=f(x,y), (X, y) €D}.

Similarly, we define the explicit surface relative to x or y. If Sis explicit
relativeto x, y, or z, then we simply say that Sisexplicit. Surface Sis called
elementary iff it consists of afinite number of regular and explicit surfaces.
4.5. Remark. Each explicit surface is orientated according to the
convention in 8 VII1.3. In fact, if Sisaregular surface explicit relative to z,
then the curve y = FrD has a natural positive sense, namely the counter-
clockwise one, which induces the positive sense on

IF={(xVy,2) € R:z=1(x,y), (X, y) € v }.

Usudly, T' is caled the orientated border of S. This orientation is
compatible with that of Sin the sense of the right-hand screw rule.

When the elementary surface S is decomposed in regular and explicit
sub-surfaces, by convenience we consider that these sub-surfaces have only
border points in common. More exactly, each part of the border of a
sub-surface can belong to at most two sub-surfaces, case in which it is
traced in both opposite senses. The union of al parts of the borders which
belong to a single sub-surface form the border of S denoted I' = Bd(S).

4.6. Theorem. (Stokes formula) Let V e Cgés (27) be a vector function of

components Vs, Vs, V3 on the domain & ¢ R3I1fSc & isan elementary
surface of border T, then
jrv dr = jjs(rotV) ‘fidS.

Proof. It is sufficient to prove the formula for a single sub-surface of S
which is regular and explicit relative to z (for example), because finally we
can add such relations to obtain the claimed one. In other terms, we will
prove the formula supposing that S reduces to a single regular surface,
which is explicit relative to z

Let ¢:[a b] > R® be a parameterization of T = Bd(S). If we explicit
o(t) = (x(t), y(t), z(t)) for al t € [a, b], then

[V dF = [ Vidx+Vody +V5dz =

b
= [[(Vio @)X () + (V2 0 @)()Y' (1) + (V3 o @) (1) Z'(1)] .
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BecauseI' = B d(S) isapart of S, we have z(t) = f(x(t), y(t)) on I, hence
2(0= 5640, YO0 + £ 60, YOI ).
Consequently,

b
[V dr = [[04+V5 0 )o1K (0 +1V2 +Vs S ) o010y (Ock =
r X oy

a

= I[\/l(X, Yy, F(XY))+V3(x Y, f(X y))% (X, y)]dx +
Y

+ [\/2(X1 Y, f (X’ y)) +V3(X’ Y, f (X1 y)) % (X’ y)]dy

Using the Green formula for y and D in R?, we obtain
= 0 of, 0 of

Vdr=||| —My+V3—)——(V; +V3—) [dxd

! IDI{@X(Vz 36y) ay(V1 38)()}d y

The problem reduces to evaluating the square bracket under this double
integral. In fact, since f € C.%D), its mixed partia derivatives of the

second order are equal, hence
0 o, 0 of
—Mo+V3—)—— M +V3—) =
aX(Vz 36y) ay(Vl 3ax)

2
%+%q+(%+%Qjﬂ+v3_a f_
OX 0z OX OX 0z OX)oy oxoy
oV oV of (%+%§J6f VAl

-4 1= _ ——V;——

oy 0z oy)ox oxoy
- [Nz NV, _i(5V1_5V3)+ Ny V1) _
oy oz oy\ 0z 0oX oX oy

2 2
= (rotV)-ﬁ-\/(ﬂj +(ﬂ] +1,
OX oy

, , U2
where fi= (ﬂ) o 41 —@T—gﬂﬁ is the unit normal to
OX oy oX oy

S(||f || =1). Finaly,

of V2 (of )
[vdr=[[(rotV)-n (—j +| — | +1dxdy=[[(rotV)-fds,
r D OX oy S
which proves the Stokes formula. &
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4.7. Remarks. (i) The Green formula (which has been used in the proof) is
a particular form of the Stokes formula. In fact, if V3= 0, and ' =y is a
plane curve bordering the domain S= D < R?, then ii = (0,0,1), hence we

have (rot V)i = %—%,While
oxX oy

[VdT = [Vidx+Vsdy.

r Y

(i) The line integra _[\7dF is also called the curl or circulation of V on
r

I'. Using this term the Stokes formula says that: "the flux of the rotation of

V through Sisequal to the curl of V along theborder T' of S' .

4.8. Corollary. Under the conditions of theorem 4.6, if S and S are

elementary surfaces having the same border T, then the fluxes of rot V

through S, and S; are equal.

Proof. According to the Stokes formula both fluxes are equal to the curl of

V on I. Obvioudly, the orientation of S, and S, are supposed to be

compatible to the positive senseonT. %

4.9. Remark. Using Stokes formula we can improve theorem 12, 83,
chapter VI, in the sense that the condition for the domain to be stationary

can be removed from the hypothesis. In fact, if the field V is conservative,

i.e. rot V = 0, then the curl on any closed curve is null, hence the line
integral of the second type does not depend on the curve, but only on its
endpoints. In other terms, each irrotational field is non-circulatory (or
circulation free).

We mention that besides their theoretical importance (obvioudly in field
theory), the above formulas are frequently useful in order to evaluate
surface and line integrals.
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§ VIIL.4. Integral formulas

PROBLEMSS8VIII .4

1. Evauatel = j j yzdydz+ zxdzdx + xy dxdy , where Sis the boundary of
S

aregular domain 7 < R®. Generalization.

Hint. V (X, Y, 2) = (yz, X, xy), hence divV =0, and | = 0 according to the
Gauss-Ostrogradski formula. More generaly, we obtain a null integral if

V (%Y, 2) = (f(y, 2, 9(x, 2, h(x, y)).
2. Evauate| = [[xdydz+ydzdx+ zdxdy, where Sis the external surface
Q

of a sphere of I‘&di[lS r (and arbitrary center).

Hint. In the Gauss-Ostrogradski formula div V = 3, and ||[dxdydz is the

7
volume of the sphere.

3. Find | = [[x2dydz+ y2dxdz+ z2dxdy if Sis the external total surface
S

of thecone0< z=hy/x2 + y2 <h,whereh> 0.

Hint. The Gauss-Ostrogradski formula reduces | to a triple integral; the

7Th2
resultisl = —.
2

4. Show that if V derives from a harmonic potential in the regular domain
7, then theflux [[V-fdS=0, where S= Fr (7).
S

oU ouU ouU
X oy oz
U is harmonic. Use the Gauss-Ostrogradski formula.

Hint. By hypothesis, V = ( ] hence divV = AU = 0 because

5. Provethat if Sisa closed surface, which bounds a regular domain, and
I is a fixed direction, then | = jjcos(ﬁ,r)dszo, where fi is the outer
S

normal to S
Hint. Consider i = (cos a, cos B, cos y) and | = (oS ag, COS fo, cos yo),
such that | = [[cosaqdydz + cos Bodzdx + cosy gdxdy . On the other hand,

S
cos(fi,|') = <A, >, asin the Gauss-Ostrogradski formula.
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Chapter VIII. Surface integrals

6. Evaluate | = J' y2dx + z2dy + x2dz, where T is the contour of the triangle
r

of vertices A(a, 0, 0), B(0, a, 0), C(0, 0, a).

Hint. V= (y?, 2, ¥ has rot V = (=2z, —2x, —2y), hence using Stokes

formula, | = —%”(x+ y+ 2)dS, where Siis the surface of the triangle
S
ABC. Sincex+y+z=aon$S and [[dS is the arca of A ABC, we obtain
S
| = -a’.

7. Applying Stokes formula, find | = I(y—z)dx+(z—x)dy+(x—y)dz,
r

where T is the ellipse of equations X* + y* = 1, x + z= 1. Verify the result
by direct calculation.

Hint. V =(y -z z-x, x—y) hasrot V = —2(i + ] +k), and the plane of
1
V2

X=cost,y=s8nt,z=1-cost,t € [0, 2 x].

theelipsehas n = (1,0,1). | = —4x. A parameterizationof T is

8. Evauate thelineintegra | = dex+(x+ y)dy + (X+ y+ 2)dz, where I"
r

has the parameterization x=acost, y=asint, z= a(cost+ sint),
t € [0, 2 #], using Stokes' formula, and directly.

Hint.rotV =i -] +k,andisan dlipseontheplanez= x + y.

9. Find the curl of V = 2x i+ 22y 2T+22I2 along the circle of

X2+y2  x2+y
equations X* + y* = 1, z= 1 traced once in the positive sense relative to
0z—axis.

Hint. rot V = 0, hence apply the Stokes' formula
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CHAPTER IX. ELEMENTSOF FIELD THEORY

In essence, all the important notations of the field theory were already
introduced and studied in the previous chapter for both scalar and vector
fields. Therefore this chapter will be a synthesis on the differential and
integral calculus, expressed in a more intuitive language, specific to
applications. For these practical purposes, in 8 1X.3, we will put forward
the most significant types of particular fields.

§1X.1. DIFFERENTIAL OPERATORS

For the beginning, we have to clarify the notion of field, which so far was
reduced to a scalar function ¢ : & — R, when we were speaking about
scalar fields, or to a vector function V: & — R® in the case of a vector
field. Usually, @ isadomainin R® but a similar topic is valid when
@ < R Some problems arise when operating with ¢ and V, since the
values of ¢ are considered as belonging to the field of real numbers, over
which the vector space R® is defined, and the space R® of the values of V is
identified with the initial vector space R>, which contains @. In other
terms, aslong as R® isa set of pints (X, y, 2), or position vectors

F=xi+y]+zk,
the definition of V (X, y, 2) in the same space, as in Fig. 1X.1.1, makes no
rigorous meaning in spite of its practical use (e.g. the work of a force, the

flux, etc.). This situation is clarified by considering the notion of "tangent"
space:

Z A
vV
?
0 >
y
X
Fig. IX.1.1.
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Chapter IX. Elements of field theory

1.1. Definition. Let A= (X, Yo, Zo) be afixed pointin R>. For any other
B € R? the pair (A, B) is called tangent vector a A to R®. The set of all
tangent vectors at A is called tangent space at A, and is denoted as Ta.

The point A is called origin (or application point), and B is called vertex
of the tangent vector (A, B). The number ||B — Al| isthe length, and B - Ais
the vector part of (A, B). It iseasy to organize T, as alinear space:

1.2. Proposition. T, endowed with the operations @ and ® defined by
(A,B) ®(A,C)=(A,B+ C-A)
A® (A B)= (A A+ AMB-A)
isalinear space isometric to R®,

The proof isroutine.

1.3. Remark. The tangent space reproduces the geometry of R* at A since
we can define the scalar product of two tangent vectors using the scalar
product in R of their vector parts, i.e.

<(A, B), (A, C)>=(B-A(C-A).

Using this notion we can introduce the notions of norm, distance, angle

orthogonality, etc., and we can see that the correspondence
Ta> (AB) o B-AcR®
IS an isometric isomorphism.
The tangent vectors
ia= (A 1,0,00+A), ja=(A(0,1,0+A),and ka= (A (0,0,1) + A
represent the canonical basis of T,. Using the components of the tangent
vectors we can also construct the vector product, the mixed product, etc.

Between tangent vectors of different origins we have the relation of

parallelism defined by
(A]_, B]_) ” (Az, Bz) <0,B - A and B,— A are collinear.

Now we can formulate the correct notion of vector fields, which is also
applicable to general (non-flat) manifolds:

1.4. Definition. The set o7 = U Ta is caled tangent bundle of RS A
AcR®
vector field in thedomain @ < R¥®isafunction V: @ — <7 for which

V (A =V e Tafordl Ae @.
If V and W are vector fields on &, their sumis defined by
(V +W)A) =V DW 4
a any A € &. Similarly, if V isavector fiddon Zandf: & — Risa
scalar field, their product is defined by
VYA =f(A) ®Va

aany A e Y.
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§ IX.1. Differential operators

Similarly, we can define the scalar product, the vector product, etc., of
vector fields using, at each A € &/, the corresponding operationsin Ty, i.e.
by "local" constructions.

In order to justify the previous use of the term "vector field" for functions

V: ¥ — R3 where 7 < R® we mention that in the case of R® (whichisa

linear, "flat" manifold) we have:
1.5. Proposition. If % is the space of al vector fieldson & R3 and o7

Is the set of all vector functions on 7, then % and o7 are isometricaly
isomorphic.
Proof. Each vector function F : @ — R®is defined by three components,
ie F = (f, T, f3), which are scalar functions on 7. It is easy to see that
each vector field is also defined by three components, i.e.
V =Vl + V,J+ V3K,
where Vi, Vo, V31 @ — R. Infact, if 1, J, K represent the fundamental
fields, defined at any A € & by
I (A)=1ix=(A (1,00 +A)
JA)=]a=(A(010+A
K (A)= ks = (A (0,0,1) + A)
thenV; = <V ,1>,V,=<V,J> V=<V, K>.
The claimed isomorphism is obtained by identifying the corresponding
components Vi, Vo, V3 and fy, T, f5 . &>

1.6. Remarks. (i) The study of the scalar and vector fields is realized by
three differential operators. gradient, divergence and rotation, which can be
unitarily treated using the following Hamilton's "nabla" (or "del") operator
(The Greek vapiro is the name of an ancient musical instrument of
triangular shape):
034+ 9%,
oy 0z

The constant fields 1, J, K are mentioned here in order to emphasize
the local character of nabla, but according to the above proposition we can
simply note

v=I74
OX

(i) For practical usesthe symbol V can take two meanings, namely that of
avector, and that of an operator. As an operator, which contains the partid
derivatives, it manifests also two characteristics, namely:

- linear operator relative to the algebraic operations;

- differentia operator acting on the components of the field.
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Chapter IX. Elements of field theory

These properties of V determine the rules of operating with it and also
the significance of its action.
(iii) If U: 2 — R isascdar field, then
Vit P+ Pi=gadu.
OX oy 0z

If V: % — o7 isavector field of components Vi, Vs, V3, then

VU=

V-V = M, Np Vg _ divV, and
ox oy o0z
VXV :(% _%)T + (% _%)j + (% _ %)R =rotV.
oy 0z 0z  OX OX oy
We mention that V occurs in the notion of derivative of a scaar field U
along the unit vector I , i.e. % =1V, inthe sense that
ouU

(I-vU=1+(vU)=1I-gradU= r
The derivative of avector field VV in direction | , which is defined by
IirnV(x+t| )—V(x),
t—0

vV, _

—(X) =

e (X)
may be similarly expressed as:

Xox Yoy ‘oz ol ol
In such formulas | - v acts as ascalar differential operator.
The Laplace second order differential operator on scalar fields
oAU . oU | oW
+ +
ox2  oy? 022
is frequently considered as A = V?, in the sense that
AU = (V-V)U= V-(VU)=div(grad U).
The vectorial behavior of v isvisiblein the following:
1.7. Proposition. For any scalar field U and vector field V we have:
(i) Vx(VU)=0gs;
(i) V- (VxV)=0;
(i) Vx(VxV)=V(V-V)-(V-V)V.
Proof. (i) The vector product of collinear vectors is null; in this case it

means that rot (grad U) = 0.
(if) The mixed product, in which two of the vectors are collinear, isnull. In

other words div (rot V) = 0.

AU =
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§ IX.1. Differential operators

(iii) a x (b x €©) =(a-c)b — (a-b)c is generaly valid for the double
vector product of three vectors, hencealsofor a=b =V and € = V. In
particular, this formula shows that
rot (rot V) = grad (divV) — AV,
where AV = AVyi + AVZT + AV3E = 0N + 0N + 0N :
ox2  oy? 022
We remember that the starting formula follows from
ax(bxc)=Ab +pc.
We multiply by & to obtain A(d - b) + u(a - €) =0, hence
A=k(@ c)and u=-k(a- b). If wetake ||| =]|b|l=]c]| =1, and
a=b 1 ¢, then weobtain k=1.
The linear character of V isessentia in properties as:
1.8. Proposition. Let T, U be scalar fieldson @ < R® V, W be vector
fiddson 7, and A € R. Then the following formulas hold:
i) VU+T)=VU+ VT, V(AU)=AVU
(i) V' (V+W)=VV+VW; V- AV)=AV"V
(i) VX(V+W)=V XV +VXW;:VXQAV)=AV xV.
Proof. These formulas express the linearity of grad , div and rot. &

The property of V of being a differential operator is especialy visible
whenever it acts on a product.
1.9. Proposition. If U, T are scalar fields, and V , W are vector fields, then:
(i) VU=0if andonly if U = constant
(i) V -V=0ifV isconstant
(iii) V xV=0if V isconstant
(iv) VIUT)=TVU+UVT
(v) V- (UV)=V-«(VU)+U(V V)
(vi) Vx(UV) =U(VxV)-V x(VU)
(Vi) V- (VXW)=W" (VxV) -V (VXW)
Proof. (i) —(v) are obvious. The sign "-" in (vi) is due to the order
dependence in V x (VU) = —(VU) x V. Formula (vii) follows by
developing the symbolic mixed product

g 9 9 W, W MV V, V.
X oy oz V<\9& 82 3 1 82 3
Vi Vo Vg == — 9|19 9 90
ox oy o0z| |ox oy oz
W W W W W
Vi Vo Vg WW, W
(even though such aformulais not valid for vectors). &
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Chapter IX. Elements of field theory

When we handle with V as a differential operator it is advisable to

respect the following:
1.10. Rule. (Step 1.) V applied to a product gives two terms, in which it
acts on a single factor. We usually mark this action by an arrow " |", as for
example in the above (iv):
\A \A
VUT) =VUT)+V(UT).
(Step 2.) Redlizethe action of V, asindicated by arrows, e.g.
\2 \A \2 \A
VUT)+VUT)=(VU)T+ U(VT).
(Step 3.) Let after V asingle letter, which distinguishes the field on which
it acts, such that the arrows are not necessary anymore. For example:
A
(VU)T=T(VU).

Other important formulas involving V are formulated in the problems at
the end of this paragraph. Here we mention only the V form of the main
integral formulas (established in 84, chapter VIII).

1.11. Corallary. Under the conditions stated in theorem 2, 8§ VIIl.4, the
Gauss-Ostrogradski formulatakes the form

[[[(v-V)dxdydz= [[(V - fi)dS
D S

1.12. Corollary. If the hypothesis of theorem 6, 8§ VIII.4, is satisfied, then
the Sokes formula holds in the form

[[(vxV)-Ads=[V.dr.
) I

These formulas are useful just for better understanding of the divergence
and rotation of avector field:
1.13. Remark. In the case of a scadar field we have two possibilities of
defining the gradient of U at A € &/, namely
o, .-  0oU - oU —
P~ (A + oy (A ]+ P (A) k,
asin definition 13, 8 V.2, and according to corollary 4, § 1V.3,

grad U = (Qjﬁ
on

where i isthe unit normal at the level surface passing through A.

Obvioudly, the first definition is preferable in calculations, but it seems to
depend on system coordinates. Only the second definition shows that the
gradient of ascalar field isan intrinsic characteristic of the field.

Similarly, for vector fields, so far we have used only the coordinate
dependent expressions of div and rot, so there is a problem whether they
depend or not on the system coordinates. The answer is that they don't and
this property follows from:

grad U =
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§ IX.1. Differential operators

1.14. Theorem. Let &, Sand V : @ — R® be asin Gauss-Ostrogradski 's
theorem. Let us fix A € &, and consider a sequence of sub-domains
(Zm) men Of @, containing A, and satisfying, together with their frontiers
S, the same conditionsas & and S. If v, = u (9, is the volume of &,
and dp, = diameter(Z,,) =sup{|x—Vl: X,y €e 7} tend to zero when

m — oo, then

(div V )(A) = lim ijj\?-ﬁ ds.

m—oo Vm S,
Proof. The Gauss-Ostrogradski formulaisvalid for each 7, i.e.
jjj(vv)dxdydz=”(\7-ﬁ)ds.
D, Sh

Applying the mean value theorem to the triple integral, we can find some
points A, € Z,, such that

(divV)(An) - V= ”(\7-ﬁ)d8.
S,

There remains to use the continuity of div V , which gives
(divV)(A) = lim (divV)(Aw),
m—o0
and realize the same limit in the Gauss-Ostrogradski formula. &

1.15. Theorem. Let V e C'(?) be avector function and let us fix a
point A € @ and a unit vector i € Ta. In the plane of normal i, passing
through A, we consider a sequence (Sy)mey Of elementary surfaces of
borders ', If an, = u(S,) are the areas of S, and d,,= diameter(S,) —> 0
when m — oo, then the component of the rotation of V at A in the direction
of fiis
(rot VY(A) - fi = lim —= [V.dF .
M—o Ay, r

Proof. According to Stokes formulafor S,and I',,, m € N, we have

[[(rotV)-fids= [V.dr,

S T

m

and using the mean theorem fo the above double integral, we obtain

am[(rot V)(Ay - Al = [V-dF,
I

where A, e S, SinceV isof classC, rot V is continuous, hence
(rot V)(A) - i= lim (rot V)(Ay) - .
mM—o0

Finally, we take the same limit in the Stokes formula. &
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Chapter IX. Elements of field theory

1.16. Coroallary. (div V )(A) and (rot V )(A) are independent of the system
coordinates (i.e. they are intrinsic elements of the field at A).

Proof. The elements which appear in the right side of the relations
established in the above theorems 14 and 15, as well as the volumes, aress,
line integrals and surface integrals, are al independent of the system
coordinates. &>

In particular, we obtain the components of rot V on the canonical basis, if
we consider that are obtained; fi is successively equal to i, j and k, i.e.

(rot V)(A) - i [ay azJ(A),etc.
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§ IX.1. Differential operators

PROBLEMSS§IX.1

1. Using rule 1.10, prove the formulas:

(i) rot(UV)=UrotV —V xgradU

(i) div(VxW)=WrotV —VrotW

(i) rot (Vx W) = N W div W W div V
oW oV

—

(iv) grad (VW)= V xrot W + W xrot V W, OV
oV oW
(v) Mz\?(rgraduwuﬂ
ol ol
J N J

Hint. () vx(UV)=VxUV)+VxUV)=(VU)XV +U(VxV)=

=U(VxV) -V x(VU).
\ \

(i) VIV xXW)= V(V xW)+ VN xW)=W (VxV) -V (Vx W),

where the last equality expresses the rule of interchanging the factors in a

mixed product (compare with (vi) and (vii) in proposition 1.9).

(iv) Vx(VxW)=Vx(VxW)+Vx(VxW),whereuse
ax(bxc)= (ac)b —(ab)c,
we obtain

|

\ \ \
Vx(VxW) = (VW)V —(VV)W= — - WdivV, etc.
. v I~
(iv) Therelation V(VW)=V(VW)+ V(VW) isnot to be continued
by W div V + V div W, since the scalar product would be neglected. Using
again theidentity & x (bx ¢)=(ac)b —(ab)¢, inthesensethat
\ \ \
V x (VXxW)==V(VW)-(V V)W,

— Q|
2

we obtain
\L —
VIVW)=V x (rot W)+ W
oV
. B A TRV
) (TV)UV) = VYU V) + (VU V)=V =+ U S

2. Let @ € R®beafixed unit vector (||a]|=1),and F =x 1 +y]j + zk.

Show that:
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Chapter IX. Elements of field theory
. or
(i) p
(i) a[grad(V a)—rot(V x )] =divV (writeitalsofor V =)

@) div[||r||(ax r)] =

Hint. (i) Expressrot (V x &) according to problem 1 (iii), and multiply by
a. (iti) Combine proposition 1.9, (v) and problem 1 (ii).

=a

Q)

3. Show that if @ = R®isaregular domain, and u, v e C2,(%), then the
following Green's formula holds:

”j(uAv VAU)dQ = ”( a_\r:_ %)ds

where i isthe unit normal to Sat its current point.
Hint. Write the Gauss-Ostrogradski formula for V =ugradv and
W=vgradu, and subtract the forthcoming relations. We start with

div(ugradv) = grad u ‘- grad v + u - Av, then we introduce %
A

4. Let 7 < R®bearegular domain of frontier S, and V e C2,3(%). Show
that

[[[rotVda=|[rAxvds,

D S

where i isthe unit normal at the current point of S and the integrals of the
vector functions are understood on components.
Hint. Apply the Gauss-Ostrogradski formulato V. x W, where W is an
arbitrary constant field. Since V.x W= 10, V(V x W) = W +«(V x V), it
follows that
[[[divevxw)dQ = [[[W - (rotV)dxdydz= [[ (VW) - AidS = [ [W - (fixV/)dS.
D D S S

Consequently for arbitrary W we have
W - _mrot\7 dQ=W- ”ﬁx\7 ds.
S

5. Evaluate the flux of thefidldV = a x r +(a- r) a through a closed
surface S where 1 is the position vector of the current point, and a isa
constant unit vector.

Hint. Verify that div V = 1, and apply the Gauss - Ostrogradski formula
The flux isequa to the volume bounded by S.
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§ IX.1. Differential operators

6. Show that for any ¢, w € C2,(9), thefidd V = g grad v + grad ¢ is

orthogonal torot V.
Hint. Establish that rot V = grad ¢ x grad w using problem 1, (i) .

7. Let a = (a,a,,a,) and b= (b, by, b,) be constant vectors. We
note o= a gradr®, and w=b gradr 3 where F isthe position vector of
the current point. Show that:

() bgrade +réagrady = ?(a- F) (b F)
i) b graddiv (¢ F)+ a graddiv(r®y r)=0
(i) div(p+y) F —3(@+y) =6r(a-F) +12r 3b -F).
Hint. (i) Establish the explicit expressions
@ =3r (xa, +ya, +za,) =3r(r-a),

w =—=3r °(xb, +yb, +zb,) = -
then evaluate
b gradp = %(f-é)(f-6)+3r(*-6), and

a grady = —%(5-6)+E(r-a)(r-6).
(ii) Fromdiv (¢ ) = 9r(a-1) itforllowsthatr

b grad[div(p )] = %(r-a)(r-6)+9r(a-6) |
Similarly, sincediv(r®y )= 9r(6-F) , we have

l(r-a)(r-6)+r(*-6)}

a graddiv(r®y )= _Q[F

(iii) Start with ¢ + = 3r (F-a)~ > (-b) , and deduce
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§1X.2. CURVILINEAR COORDINATES

Even though the differential operators define intrinsic elements of the
fields, in practice it is sometimes important to express these operators in
other than Cartesian coordinates, eg. spherical or cylindrical.

2.1. Definition. Let & — R® be a domain, and T : & — R® be a vector
function. We say that T is a coordinates change (transformation) iff it isa
1:1 diffeomorphism between ¢ and & =T (¢ ), such that Det J; > 0 at
any (u, v, w) € & Thesurface

Sy, = {(uv,w) e R®: u= ug}
Is called coordinate surface of type u—constant; similarly are defined the
coordinate surfaces v— constant, and w—constant. The curve
YW= S, N Sy,
Is called coordinate curve of parameter u; smilarly are defined the

coordinate curves of parametersv and w .
The unit normal vectorsto the surfaces §, , §, and S, will be denoted

ry, Ny respectively fi;. The unit tangent vectors to the curves vy, Yy, Yw &€
denoted by Iy, I, I5.

2.2. Remarks. The coordinates u, v, w are usualy called curvilinear
because the coordinate curves are not straight lines as in the case of the

Cartesian coordinates. The change of coordinates can also be expressed by
the correspondence between curvilinear and Cartesian coordinates

¢ 3 (u,v,w) SN X, ¥,2 € Y,
which is explicitly written using the componentsf, g, hof T, i.e.

x=f(u,v,w)
y=9(u,v,w)
z=h(u,v,w).

These formulas furnish the Cartesian equations of the coordinates
surfaces and coordinates curves.
2.3. Examples. (i) The spherical coordinates (p, ¢, 0) are introduced by
X = pSin®cose
y=psSin0sing
Z=pCoso
hence Sy, Isasphere, S, iIsaconeand Sy, isahalf-plane.

Consequently v, is a haf-line, y, is a half-circle, and v, is a circle (see
Fig. 1X.2.1, a)).
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§ IX.2. Curvilinear coordinates

The vectors fy, fi, and Ay are orthogonal to each other, and fi, = I,
foral k=1, 2, 3.
VA Z
To Yz
Tt

gy — >/

Yo , y N P
S,, O [ 5
__/ y
o e
X

X
S,
Yo Po
a) b)
Fig. IX.2.1
(ii) The cylindrical coordinates (r, t, z) are defined by
X =T cost
y=rsint
z=2,

hence Sy, Is a cylinder, 3, is a half-plane and S;, Is a plane, respectively
vr ISahalf-line, y; is a circle and y, isastraight line (Fig. 1X.2.1, b)).
Similarly, { iy, fi,, A3} is a system of orthogonal vectors, and fi, = I,
foral k=1,2,3.
(i) Generally speaking { fiy, A, fig} and {I, I,, I3} are not orthogonal
systems of vectors, and A, = I, for somek = 1, 2, 3. For example we can
consider the coordinates (u, v, w) defined by
Xx=shu+chv
y=chu+shv
Z=W.
However, there are strong relations between these vectors:
aq -

2.4. Proposition. (i) Noting T, =a—L| +Ej +a—Ek etc; we have 1, || Il,

il T and 7 |l T3
(i) If, reversing T, we note
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u=o(xY,2)

v=y(xy,2)

w=y(XY,2)
then i, || grad o, M, || grad v, and fiz || grady .
(iii) {grad ¢, grad v, grad y } and {1, I}, T,,} are reciproca systems of
vectors,i.e.grado - I, =1,grado - I,=0,grad o - 1, =0, €tc.
Proof. (i) and (ii) are direct consequences of the definitions of a gradient
and of atangent to acurve. Therelations (iii) expressthe fact that
T o T'=1, hencetheir Jacobian matrices verify J; '+ Jr = |, wherel isthe
unit matrix. Since T is non-degenerate, { iy, N, A3} and {1y, |5, I3} are
linearly independent. &

2.5. Definition. If T isachange of parameters, then the numbers
ITull=La, [Tl = Laand [[Fy [ = L3
arecalled Lamé parameters and
lgrad ¢ || =Hy, || grad y [|=Hz and || grad y || = Hs
are called differential coefficients of the first order.
Using the previous proposition we deduce:

2.6. Proposition. (i) , = LIy, F, = Loly, F, = Lals;

(if) grad ¢ = H; iy, grad v = H,1,, grad x = H3fis;

(iii) LyHx = 1 for al k= 1, 2, 3, whenever the system of coordinates u, v, w
isorthogonal (i.e. {11, I, I3} isan orthogonal basisin R?).

Proof. (i) and (ii) is based on the fact that [|I, [| = [|fi. || = 1 for all k= 1,2, 3.

Relations (iii) are consequences of grad ¢ - 1, =1, €tc. >
2.7. Examples. (i) In spherical coordinates (p, ¢, 0) we have
" 1 ~ : 1 "
Li=Hi==|5ll=1, L= —=|[fpl|=psin®, and Ly= —=|Fy || = p.
H, Hs

(i1) In cylindrica coordinates (r,t,z) we have

- 1 - .

Li=Hi = ||=1 L= o =[[fell=r, andLs=Hs=||F; || =1.

2
(iii) For (u, v, w) in the above example 3, (iii), we have

L,=||F,]|==+ch2u, Lo=||f,||=vch2v, and ||F,,|| = 1= L3z=Ha,

but
rJch2v Jch2u
Hi=lgrad of| = = and H = [lgrad v || = :
ch(u-v) ch(u-v)
Consequently,

L,H;# 1% L,H,eventhoughgrade - 7, =landgrady - 1, = 1.
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§ IX.2. Curvilinear coordinates

We mention that grad ¢ and grad y are easily obtained without making

¢ and y explicit, but calculating 6_@8_([) v oy from systems of the form

ox oy ox’ oy

1=ch ua—(P+shva—w
OX OX

O:Shua—q)+chva—w.
OX OX

We obtained them by deriving theinitial relations relative to x and y.

From now on, we will consider only orthogonal coordinates.

In order for us to use the Lamé parameters in writing the differential
operators of afield, we need the expressions of the length, area and volume
in orthogonal curvilinear coordinates.

2.8. Lemma. Let (u, v, w) be an orthogonal system of coordinates, and let
L., L,, Lzbethe corresponding Lamé parameters.

(i) If yis a curve of parameterization U = u(t), v = v(t), w = w(t),
where

t € [a, b], then the length of v is

b
[l1dr 1l [3/(Lu)2 + (Lov)2 + (Law) 2dt;
Y a
(ii) If D isameasurable domain in the surface S, thentheareaof D is

[[ds= [ L1L,dudv,

D E
where T(E) = D;

(i) If @ isameasurable domain in R*, and & = T (&), then the volume of
D is

.” do = j j j L4 L, Lsdudvdw.
Proof. (i) We have

dr = r,du + f,dv+ fpdw = [(Liu)l; + LoVl + +(Law)I5]dt,
and because { Iy, I, I3} isan orthogonal basis, it follows the corresponding
formulaof ||d 1 ||.
(i1) Changing the variables (x, y, 2) — (u, v, w) in the surface integral on D,
wereplace dS= ||f, x Iy, [[dudv, but since 7, L I, we have

|| Fu X FV” = L1|_2.

(iif) Changing the variables (x, y, 2) — (u, v, w) in the triple integral on 7,
we replace dQ2 = Det Jr du dv dw, where Det Jr = 1, (T, X T}, )- &

The expressions of the differential operators in (orthogonal) curvilinear
coordinates will be obtained starting out with their invariant definitions:
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29. Theorem. Let U : 7 — R beascdar fied, T: ¢ — & beachange
of coordinates and let U=U o T be the same field in the coordinates
(u, v, w) of &.If Ly, Ly, L3 arethe Lamé parameters, then
gradG = L, 10y 130
Ll ou L2 oV L3 oW
Proof. According to the invariant definition of a gradient, the derivative

into any direction | is the projection of the gradient on this direction,
hence in particular
ZI—9 =(grad U)I foral k=1,2, 3.
k
On the other hand , if Mg = (Uo, Vo, W) isfixed in &, also by definition

Q(MO): lim U(uo+Au,vo,wo)—U(uo,v0,wo)’

8|1 As—0 AS
where As = ||, (Mo)||Au is the distance between Mg and (Ug+ Au, Vo, Wo).

Consequently,

oU 16U
ap Lo
and similarly,
oU 10 oU 180
a Lo oy Lgow
From the components of grad U, relative to the basis {17, I, I3}, we
immediately deduce the announced form of the vector grad uU. &

2.10. Theorem. Let & be aregular domaininR®, V: & — <7 avector

field, and let W = VoT, where T: ¢ — & is a change of variables
which has the Lamé parametersLy, L, Ls. If

Wi (u, v, w), Wa(u, v, w), and Ws(u, v, w)
are the components of W in thelocal (orthogonal) basis{ Iy, I», I3}, then

div\W= {5(Wﬂ—2|—3)+5(|—1W2|—3)+5(|—1|—2W3)]
L1L2|_3 ou oV oW
Proof. Let us fix M = (ug, Vo, Wp) in &, and let us consider a curvilinear
paralleloid of boundary S and volume Q (as in Fig. 1X.2.2), having the
sides along the coordinate curves.
According to theorem 14, §1X.1, theinvariant form of divergenceis
div W (M) = lim = [[W-fids.
Q00277

-
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§ IX.2. Curvilinear coordinates

Fig. 1X.2.2

To evaluate the flux of W through Swe calculate it for pairs of faces, e.g.
®,= [[ W-AdS+ [[w-fds.
ABCD MNPQ
On the face MNPQ we have fi = —I;, hence W* i = —W,(Ug, Vv, W), and

(approximately) the same on the face ABCD, i.e. W fi = W, (Up+ Au, V, W).
On both faces dS= L,Lsdvdw, so that

Vo +AV Wy +Aw
;= [ [[(WiLoLg)(Ug +Au,v, W) — (WiL,Lg)(Ug, v, w)Jdvaw.
Vo Wo

Using the Lagrange's theorem for the increment of W;L,L;, and the
mean-val ue theorem for the above double integral, we obtain

Vo +AV Wy +AwW
O, = J' J' M(Ml'mudvdw:M(MI)AUAVAW,
v M ou ou
0 0

whereM'; and M, are cogverli ent*poi nts of the parall el epiped.
Similarly, there exist M, and M3 in the parallelepiped, such that

”W-ﬁdsz
S

ou oV
On the other hand, Q = L;L,L; AuAVvAw, hence it remains to use the
conti nUity of L., Lo, L3 and W, W5, W, <>

_ [M(M;) 4 OLWls) -y +6(L1%aviw3)(M§)}AuAVAW

2.11. Corollary. Under the conditions of the above theorems (2.9 and

2.10), the Laplace operator of a scaar field U, in orthogona curvilinear
coordinates (u, v, w) has the expression
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AGe L [0ty aU) o(Llg oU) (Ll oU
Lilolg|oul Ly ou) ovl L, ov) ow( Ly ow)|

Proof. The components of W = grad U are W, = ia_U W, = 1t
L]_ ou L2 oV
and W; = ia—u hence
Lg ow
Wilols = L2_L36_U’ Wol g = Liks U and L1l ,Ws = Lib 8_U
Ll ou |_2 oV |_3 OW
Finally, AU = div W &

2.12. Theorem. Using the above notations, under the conditions of Stokes
theorem, in orthogonal coordinates (u, v, w), we have:
Lil; Loy L
1 |0 0 0
Ll,Lslou  ov  ow
LW LW, LW

rot W =

Proof. Aiming to find the component into direction rl at M= (Uo, Vo.Wp) € &,
we consider the surface S in §, coordinate surface, bounded by the

curvilinear rectangle MNPQ =T (seeFig. 1X.2.3).

Yw

Fig. 1X.2.3.

According to theorem 15, § 1X.1, this component of rot W is
rot WIT, = lim = [War,
a—>0ar
where a is the area of S = (I'). In order to evauate the curl on I', we
evaluate the line integral on each side of T, e.g.
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§ IX.2. Curvilinear coordinates

Vp+AV
[ Wdr=" [ (WsLp)(ug, v, wo)dv
MN Vo
sinceon MN, we havedr = L,dv I, etc. Consequently,

Vo+AV
der = [[W,Lp)(Ug, v, Wo) — (WaLp)(Uo, v, Wo + Aw)Jdv +
Vo
Wy +AW
+ [[(WaLg)(Ug, Vo + AV, W) — (WsL3)(Ug, Vo, W)]dw.
Wo
Expressing the increments by the Lagrange formula, and using the mean

theorem for the above integralsit follows that:
Vo +AV Wy +AW

fwdr=- | a(\’\’2"2)(|\/| DAwdv+ |

Vo Wo

- [—8(\’5‘3) (M3) ——8(\/(\9/3\/"2) (Mg )}AVAW

OWsLs) (M',)Avdw=
oV

Taking into account that a = L,LsAvAw, and that all the involved
functions are continuous, we obtain

Lo 1 |oW;aL oW, L
rOtW||1(M) — |: (VV3 3) _ (VVZ 2):|(M)
L2L3 oV oW
Similarly, we find the other components of rot W, hence we have

fot\W= L {5(\N3L3)_5(W2|—2)}r1+

LoLg oV ow
[a(\/\&Ll) a(\NsLs)} [a(Wz'—z) a(V\&Ll):|
L3 Ll oW ou L1L2 ou ov
which formally can be written as the above determinant. &

The spherical and cylindrical coordinates are frequently most used.
2.13. Differential operators in spherical coordinates. If, in particular,
wetake (u, v, w) = (p, ¢, 0), then L; =1, Lo=p Sin 9, Ls=p, and:

oU - 1 oU- 10U -

rad U = I, + I +=—Ig,

J op L psnBop ° poo S
divW = — | sin (p2vvl) 2, p0MsSN0) |

p2sin® 8(p o0

avv_L 1 .6W2+£8W3+1 +COSO
op pSinO op p O p psino

Ws
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I, psinel,  plg
o o o 1

op op 20 |p2sind
W, Wopsind  pWs
1 M5 d(W,sing) |-

= - — |1+
p2sind | | 09 00

e osing Wh_0OWS) | T oaows)_aw ] |
00 op op op

~ 1] ,0) 1 24 1 of. .0U
AU==|—p +— +———|sine—||.
p2|op\" Op ) sin?0 9?2 sind 90 o0

2.14. Differential operatorsin cylindrical coordinates. If (u,v,w)=(r,t,2)
are cylindrical coordinates, thenL,=1, L, =r, L3z =1, and
~ oU- 10U~ oU -
radU =—I1+=—I>,+—I3,
J or Trat 2 ez

oy = 2000 Ve 205
r or ot 0z

rotw =

—

1 Ty 3
ot =20 9 O 1joWs oW, I+
rlor ot oz| r| ot 0z
W rW, Wa
[8\/\& awg}a 1[a(rW2) avﬂa
+|—=——|r+= - |3,
0z or r or ot
AU =

1o( oU) 1840 o4
| |+ 5—+—.
ror or ) r2 o2 oz2
The proof reducesto adirect substitution, and it is left as an exercise.
2.15. Remark. The formalism based on a symbol like V is not possible

anymore. In fact, the expression of grad u might suggest to consider
~ 10~ 1o+ 1 0=+

= =+,
Lout Lyov? Lyow:

but obvioudly div W = VW, androt W = V x W, etc. Consequently, it

Is advisable to use V only to express differential operators in Cartesian
coordinates.
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§ IX.2. Curvilinear coordinates

PROBLEMSS§&I1X.2.

1. The generalized spherical and cylindrical coordinates are defined by

X =apsinocose X = ar cost
y=bpsinbsing and {y=brsint
Z=Cpcoso z=cC

wherea, b, c e R,.

(i) Identify the coordinate surfaces and the coordinate curves

(i) Find the vectors Ay, A, and fig; and Iy, 15,13, and check their
orthogonality

(|||) Evaluate L,, Ly, L, and Hq, H,, Ha.

Hint. Compare with examples 2.3, 2.7 (i) and (ii) of this section.

2. Consider the (non-orthogonal) system of coordinates (u, v, w) defined by
T:R®*> R3 where(x,y, 2) = T(u, v, w) means:
Xx=shu+chv
y=chu+shv
Z=W
(i) If I isthe straight line segment of end points (U, Vo, Zo) = (1, 1, 1) and
(ug, vi, W) = (2, 2, 1), find the length of y = T(I) using the Lamé
parameters

(i) If Qisthesguare of diagonal I, find the areaof S= T(Q)

(iii) If Kisthe cube of base Q, find the volume of D = T(K) .

Hint. L; = v/ch2u, L, = vch2v, L; = 1. Wehave x = y iff u= v, hence y
is the straight line segment of endpoints (e, e 1) and (¢, €, 1); a
parameterization of y is x = € ,y= € ,z=1,t e [1, 2]. Because the
coordinate curves are not orthogonal, we have to apply the formulas

J.de-df = the length of vy,
I

[[I7xT, | dudv = the areaof S, and
Q
[[[r (r, x7,)dudvdw = the volume of D
K

. LeaU: 2 —» R beascdar fidd, T: & — & be a change of
coordinates, and let T be expressed by
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u=o(xY,2)
v=y(Xxy,2)

W= X(X, yl Z)’
where (X,y, 2 € . Show that

~

grad Uz%grad(p+%gradw+%gradx,

and use it in order to obtain the expression of grad U in orthogonal
curvilinear coordinates.

Hint. grad ¢ = Hy iy = LiE etc.
1

4, Establish the formulas:
(i) rotl, =Ligrad(|_k)x|“k, k=123
k

(i) rotW= > grad(LW)xly .
k=1,2,3

Hint. (i) Since grad ¢ =Lir1 it follows that rot (Lirl) = 0. On the other
1 1

hand rot (iﬁ) =_ 1, +grad Lt l;, wheregrad 1_ izgrad L.
Ly L L Ly Ly
(i) rot W = > rot(Wly), where
k=1,2,3
rot(Wl;) = —I; x grad Wy + Wiyrot |;=

= [grad W, + WlLi(grad L)l x Iy = Ligrad (LsWy) x |y, etc.
1 1

5. Establish the formulas

div i, = i(grad L,L3)ly, etc.
Lol

and use them in order to obtain div W in orthogonal coordinates.

Hint. I; = I, x I3, hence div I;=— I, rot I3 + I3 rot |, (see problem 1 (ii),
in 8§ IX.1), where we can use the previous problem , and the properties of a
mixed product. Further,

div(Wily) = ——— (grad WyLoLo) [y = —+ .OWibala)
L2L3 L1L2L3 ou
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6. Let us consider the system of coordinates (u, v, w), defined by
X=chu cos Vv
T: Jy=shusinv
Z=W
Show that it is orthogonal, determine the Lameé coefficients, and write the

L aplace equation in these coordinates.
Hint. 1, I, and 1}, form an orthogonal system of vectors at each poi nt.
2
L,=L,=vch2u—cos?v, Ls=1. % ﬂ + (ch?u — coszv)——O
ou ov2

7. Evaluate div W and rot W if, in spherical coordinates (p, ¢, 0), the field
is defined by W= 3p?01;+ p°l5.
Solution. div W = 12p0 + p ctg 6, rot W = 0.

8. Find the potential from which derives W = 3p®01;+ p?l5 in spherical
coordinates (W is non-rotational according to the previous problem 7).

- (p.9.,0)
Hint. U (p, ¢,0) = [W-dF, where

(Po+90,00)
dF =, dp + T, do + Tyd0 = dpl; + p sinOdol, + pdols,
hence W dr = 3p?0dp + pde. Using a particular line,

_ p 0
U (p. ¢,0)= | 3p200dp+ [p3d0 =p +c.
Po 0o

9. Find the potentials of the following fields in cylindrical coordinates:
a) V =zl +rlz(rotV =0)

b) W =5|“2+t|“3 (rot W = 0).

Hint. In cylindrical coordinates dF = I;dr + rl,dt + I3dz. In particular,
Vdr =d(r2), hence U =rz+ const. Similarly, Wdi =d(t2) implies
U =tz+ const .

10. In the loca basis {l,, I, I3} of the curvilinear coordinates (u, v, w)
defined by
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1 2 2
X= u \

1y=uv
Z=W

we consider the fild W = uly + v I, +w I5. Show that rot W= 0, and find
the potential which generates W .
Hint. L;=L,=vu?+v2, L3=1, hence

dr = VuZ+v2 [jdu+ vuZ+v2 l,dv + I3dw.

The potential
_ (u,v,w)
U (u, v, W) = j uvu? +v2du + vwu? + v2dv + wdw
(Ug, Vo, Wo)
can be obtained using the formula
(u,v,w)

[ Pdu +Qdv+ Rdw =

(Ug Vo, Wo)

u \" W
= [ P(t,vo, Wo)dt + [Q(u,t,wo)dt + [ R(u,v,t)dt
Uy Vo Wo
I.e. evaluating the circulation on a particular broken line up to a constant.

Theresultis U (u, v, w) = %(u2+ )32 +w.
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So far we have been studying only the non-rotational fields as a
particular type of vector fields (see line integrals non-depending on the
curve, finding a function when the partial derivatives are known, etc). The
central result on non-rotational fields refers to the fact that they derive from
potentials and these potentials, can be expressed as line integrals of the
second type (circulations). The most representative example of a
non-rotational field isthe Newtonian one

-1
V =k r—3r :
where k depends on the units, and 1 is the position vector of the current

point (V =grad U, whereU = — %) .1t is easy to see that divV = 0too, S0

we are led to analyze similarly other types of fields.
3.1. Definition. The field V : @ — <7 is said to be solenoidal iff
divV =0 holds at each point of & = R®.

Because of the practical meaning of div V , expressed in terms of flux, the
solenoidal fields are also called fields without sources.
3.2. Proposition. V : & — <7 isasolenoidal field if and only if the flux

of V through any closed surface Sis null (in the conditions of the Gauss-
Ostrogradski theorem).

Proof. If div V = 0, then [[V-fdS= [[[divVdQ =0 for any domain Q
S Q

with Fr Q = S Consequently, we can use the invariant definition of div V,
specified in theorem 14, §1X.1). >

3.3. Theorem. Thefield V: @ — <7 is solenoida if and only if for each
Mo = (Xo, Yo, 20) € 7 there exists aneighborhood N < &, of My, and there
exists avector field W: N — <7 suchthat V = rot W on N.
Proof. If V = rot W then divV = V-(VxW) = 0. Conversaly, let us
choose Mo = (X0, Yo, 20) € @ for whichN= SMg, r) < & for somer > 0
(which exists because 7 is open). By hypothesis
divv = M, No N5
oX oy o0z
on ¥, which is vaid on N too. The problem is to construct the field W,
such that V = rot W on N. We show that there exists such a field in the
particular form W =W, i +W, ], i.e. thefollowing relation is possible:

0
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<
I
|

In fact, the problem reduces to solving the system:
[OW,
oz
oW x
o =V *)
oW, oW
x
on N. Thefirst equation gives

z
Wa(X, Y, 2) = — IVl(x, Yy, 2)dt + (X, Y),
z,
where ¢ is an arbitrary rea function of class C' on N. Similarly, from the
second equation we deduce

z
Wix, ¥, 2) = [Vo(x,y, D)t + (X, ).
z,
Replacing W, and W; in the third equation we obtain

V4
8V1 8V2 (p
- || == x,tdt—x —— (X, Va(X, Y,z
Zjo[ﬁx+ayj( y:0)dt+—(x,y) ay( V) =Va(x.y.2)
or, using the hypothesis that divV =0,

Zfoaas(x y’t)d”—(P(X y)—g(x y)=V3(X,y,2).

Applying the Leibniz-Newton formulato the above integral, it follows
0
L y)——“’(x Y) =Va(x Y, 2).

=\

= V3

Obviously, there are functions ¢ and v satisfying this condition, hence W,
and W, are completely (but not uniquely) determined. >

3.4. Remark. The construction of W by solving (*) aso represents the
practical method of solving problems in which W is asked. Usually, the
method furnishes W on the whole @, even though the proof is restricted to
some neighborhoods of the points at ‘7. If the construction of W must be
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realized repeatedly at different points, there arises the problem of
comparing the fields on the common parts of the corresponding
neighborhoods. This problem is solved by:

3.5. Proposition. A necessary and sufficient condition for the fields W and
Z to verify the rdations rot W = V= rot Z on the open and star-like
domain ¥ isthat

W - Z = gradU
for some scalar field U on &, androt W = V.
Proof. If rot W = V=rot Z, then rot (W-Z) = 0, hence W—Z derive
from a potential U.
Conversely, if V =rot W and Z=W+gradU, thenrot Z =V. <

By analogy to the case of the non-rotational fields, which are said to
"derive" from a scalar potential, a similar terminology can be used for
solenoidal fieldsin order to express theorem 3.3 from above.

3.6. Definition. The field W, for which rot W=V, is caled a vector
potential of V. If so, we also say that VV derives form avector potential W .

Using these terms, the above results take the forms:

3.7. Corallary. (i) V: & — o7 isasolenoida field iff it locally derives
from avector potential.
(if) Two vector potentias of the same field, on a star-like and open domain
9 , differ by agradient.
(i) If V derives from the vector potential W, and Sis a surface of border
I asin Stokes theorem, then

[[V-nds=[w.dr,

S r
i.e. theflux of V through Sreduces to the circulation of W along T.
Proof. All these assertions represent reformulations of some previously
established properties, namely theorem 3.3, proposition 3.5, and
respectively the Stokes' theorem. &

As generalization of the potentia fields we consider now another type of
fields, which are generated by two scalar fields.

3.8. Definition. We say that the vector field V: @ — <7 is bi-scalar iff
there exist two scalar fields @, v : & — R such that
V =¢grady.

The bi-scalar fields can be characterized in terms of rotation.
3.9.Theorem.V: ¥ — <7 is a bi-scdar field iff VrotV =0.
Proof. If V isahbi-scalar field, then V rot V = 0 since

rot V=gradoxgrady.
Conversaly, if Vrot V =0, thisis sufficient for the equation
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VldX + Vzdy +V3dZ =0 (**)
to have solution, where V3, V, and V; are the components of V.
In fact, this equation is equivaent to the system

@: A(X, Y, 2)
OX
0z
— =B(X,Y, 2)
oy
_ Vv _ V5 .. .
where A= —— and B=-—%=, whichisintegrable iff
V3 V3

%+%B:@+@A,
oy 0z oX 0z

i.e. Vrot V = 0. This conditions assures the possibility of integrating
successively the equations of the system, i.e. in z= f(x, y) + C(x) obtained
by integrating the second equation we can determine C such that the first
equation to be satisfied too. We say that U be a solution of (**), if
U(X, Y, 2) = 0 represents the implicit form of the solution z= z(x, y). In this
case there exists an integrand factor p such that

uVidx + pVody + Vs dz = du,

or, equivalently, uV = grad U. In other notation, namely ¢ = 1, and y = U,
1l

this means V =¢ grad v. &

Another characterization of the bi-scalar fields is formulated in the more
geometrical termsinvolving the field lines:

3.10. Definition. Thecurve ¥ @ iscaled fidd lineof V: @ — o7 iff

V (M) istangent to & at each M e < According to this definition, the

field lines are solutions of the system

dx_dy _dz

Vi Vo Vg
where two of the variables X, y, z are searched as functions depending on
the third one.
3.11. Theorem. V: & — <7 isabi-scalar field iff there exists afamily of
surfaces in @, which are orthogonal to the field lines of V.
Proof. If V is bi-scalar, then V || grad y. Therefore V is orthogonal to the
surface y = y(Mo), where My € <, and V istangent to < at M.

Conversely, if the field lines are orthogonal to the family of surfaces

w(X, Y, 2) = const., then VV || grad vy, hence V = ¢ grad v. &

The following proposition introduces some of the most remarkable
properties related to bi-scalar fields, aso known as Green formulas.
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§ IX.3. Particular fields

3.12. Proposition. Let VV = ¢ grad y be a bi-scaar field in @ < R?, and let

Q < 9 be aregular domain of frontier S (as in the Gauss-Ostrogradski
theorem) If ii istheunit normal to Sat the current point, then we have:

”(p dS= III[cpAw+gradcpgradw]dQ

i) Jf [ v ‘ﬂds [Jtosy - waoe
(iii) ”-‘EdS:MA@dQ.
S on Q
Proof. (i) If we apply the Gauss-Ostrogradski theorem to V. = ¢ grad v,

then weobtain V- i = q)g—\%] and div V =pAy + grad ¢ grad v.

(i) We write (i) for V = ¢ grad v and W = y grad ¢, and subtract the
corresponding formulas.

(iii) Take y =1 in (ii), such that Z—\H =0, and Ay = 0. &
n

3.13. Remark. Condition Vrot V = 0 is useful in practice in order to
recognize the bi-scalar fields. The problem of writing a bi-scalar field in the
form ¢ grad v may be solved using theorem 3.11. In fact, solving the
equation V dr = 0, we find the family of surfaces y = const., which are
orthogonal to V, hence V || grad y. Finally, we identify ¢ such that
/ =ogrady.

The last type of fields, which will be considered here, is that of the
"harmonic” fields. Even though they are more particular than the previous
ones, these fields are the object of a wide part of mathematics, called
harmonic anaysis.

3.14. Definition. Let 7 beadomainin R% and V e CL, (7). We say that
V isaharmonic field iff it is ssmultaneously solenoidal and irrotational in
9. The scaar fidd U : & — R is said to be harmonic iff AU = 0
(alternatively we can say that U is a harmonic function).

A significant example of harmonic fieldisV =k Lg
r

3.15. Theorem. Let & be an open and star-like set in R® and let

V: 9 - <7 beafidd of class C' on @. Then V is harmonic on @ iff
there exists ascalar field U : @ — R, of class C* on &, such that AU = 0

andV =gradU in 7.
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Chapter IX. Elements of field theory

Proof. V isirrotational iff V = grad U. On the other hand, V = grad U is
solenoidal iff AU = 0. &

The following theorem shows that the harmonic fields are determined by
their values on the frontier of the considered domain.
3.16. Theorem. Let @ < R® be open and star-like, and let Q ¢ @ be a

regular compact domain, bounded by S
(i) If the harmonic functions U; and U, are equal on S, then they are equa
on Q.

(i) If the harmonic vector fields V; and V, have equal components along
the normal to S (at each point, then V; and V,, are equal on Q.
Proof. (i) For U = U, — Uy, we have AU =0 on Q, and U |s = 0. If we note
V=Ugrad U, then
divV =|lgrad U|F + UAU =] grad U |,
ouU

andV.-i=U-—=0o0n S
on

Consequently, according to the Gauss-Ostrogradski theorem,
[[[Ilgradu ||? d2=0, hence grad U = 0.
Q

So we deduce that U = constant, and more exactly, U =0 on & since
U |s=0. Inconclusion, U; = U, on Q.
(||) Let us note V =V, — Vj. Since V-l = V,- i on S, we deduce that
V =0on S Because V is harmonic, there existsU : & — R such that
= grad U. If we consider W = U V , it follows that
div W= UAU + ||grad U|f = |lgrad U|

on?,andW-ii =UV-fi =0onS Using again the Gauss-Ostrogradski
theorem, we obtain that

[[[igrad U2 do =0,

9)

hence grad U = 0. Consequently, V =0on &, i.e. V; = V,. &

3.17. Remark. The problem of finding the (unique) harmonic field, which
Is specified on the frontier, is specific to the theory of differential equations
with partial derivatives of the second order. Without other details of this
theory, we mention that a lot of properties of the harmonic fields are
consequences of the previousy established results concerning other
particular fields. For example, from proposition 3.12, it follows that

(fo a5 [fv 7os,

and
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§ IX.3. Particular fields

on

whenever ¢ and y are harmonic functions.
A problem which leads to the solution of the Poisson equation Ap = A is
that of determining afield of given rotation and divergence:

3.18. Proposition. Thefiedld V: @ — <7 for whichrot V = a, divV =b,

where a isagiven vector field, and b are given scalar fields, is determined
up to the gradient of a harmonic field.

Proof. We search for asolution of theform V = Vj + V,, where
rotV; =0 rotV, =a
_ i and _ 2 :
divVy =Db divV, =0
Because Vj is irrotational, there exists ascalar field ¢ on & such that

V; = grad ¢. The second condition on V; gives Ag = b. If ¢, denotes a

particular solution of this equation, i.e. Apy = b, then ¢ = ¢o + ®@, where
A®= (. Consequently,
V; = grad ¢o + grad ®. (*)

Now, about V;, we remark that div @ = div rot V,, = 0, hence a is

solenoidal, and V, is a vector potential of &. As usudly, this potential is
determined up to agradient, i.e.
Vo =V +grady,
where \, is a particular vector potential of &. On the other hand, because
div V, = 0, we obtain Ay = — div V, which is another Poisson equation. If
Y o 1s a particular solution of this equation, then may write y = y o + P,
where AY = 0. Consequently,
V, =V, +grad y, + grad . (**)
Using (*) and (**) we obtain
V =V, +grad (o +yo) + grad =
where & = @ + ¥ is an arbitrary harmonic function. &

jja—‘fdszo
S

3.19. Remark. The way of proving the above proposition furnishes a
practical method of finding a vector field for which we know the rotation
and the divergence. The concrete determination of the left function E is
dependent on the form of &/, and of the values imposed on the frontier of
9. Solving the Laplace equation on & under given conditionson Fr @isa
specific problem in the theory of differential equations with partial
derivatives of the second order (see an appropriate bibliography).
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Chapter IX. Elements of field theory

PROBLEMSS§&I1X.3

1. Verify that the following fields are irrotational and find their potentials:
M)V =@y +X)1 +@F+ 32] + (@ + 3y)k in Cartesian
coordinates,

(i) F = L1, in spherical coordinates;
p

(i)W =2r zsint Iy + r zcost |, + r’sint I3 in cylindrical coordinates.
Hint. Evaluate the rotation in the corresponding coordinates and evauate
the line integrals of V -dr on particular broken curves (as in the previous
paragraphs).

2. Show that thefield V=r (& x ') is solenoidal and find one of its vector
potentials, where @ is a constant (fixed) vector, F = xi +y] + zk isthe
position vector of acurrent positionin @ =R3 andr = || ||.
Hint. divV=(Vr) (& x F)+rv(&d xF)=0+rf (Vo)-ra&(Vxr)=0,
where =], hence V is solenoidal. Since this property is intrinsic, we
can choose the reference system such that o stays aong the z—axis of a
Cartesian system. Because I has an invariant form xi + y] + zk, the
problem reduces to find the vector potential of the field
i j k
V=r00 ol=royi +xj).
Xy z
Because looking for the vector potential of the form W = (W, W, 0) asin
theorem 3.3, leads to inconvenient integrals, we may try other forms,

eg. W = (W,, 0, Ws). In this case we have to integrate the system

Moy

0z OX
M _
oy
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§ IX.3. Particular fields

We find W; = —% or®+ ¢(x 2), Wi = y(x, 2) and according to the second

equation, 6_\|/+8_(p = 0. In particular, we can choose ¢ = y =0, hence a

0z OX

vector potential isW = Lok =1,
Z Z

3. Show that the following fields are solenoidal, but not irrotational, and
determine a vector potential for each one:
() V =297 —y'] +K
(i) V =X +xz] —2xzk
Hint. (i) Following theorem 3.3, we obtain
Wo=-2yz+ o(x,y), Wi=-yz+ y(X,Y),
¢ , oy
whee —+—=1;eg. 0 =2X, y =Y.
x oy €. ¢ V=Y
(if) Similarly, we find
1
W, = —x%z + o(x,y), Wi= EXZZ +y(X,Y),

where a—(p—%vzo, asfor example ¢ = ¢ (y) and y = y(X).

OX

4. Show that for every irrotational and solenoidal field VV , we have
grad (F V) +rot (F xV)+V =0,
where 1 isthe position vector of the current point.

Hint. grad (F V) =F xrotV +Vxrotr + 6_\5+6_[ and
o oV
ot (F xV)= " — N rdivV —Vdivr.
oV or

5. Evauate the divergence and the rotation of the fields;
@) rf(r)ygradr+ axr

(i) fgradgxggradf

(iii) rx(axr).

6. Wenotel = @ x r, where @ isaconstant vector and r isthe position
vector (as usually, u denotes the norm of G). Find the conditions on the real
functions F and G of areal variable, such that:

(i) GF(u)isirrotationa

(i1) G(u) is harmonic.

151



Chapter IX. Elements of field theory

Hint. (i) rot[GF(u) ] = (;—F(grad u+ t)+ F(urot G, where
u

gradu:w,androt U =2a.
|axr]

Finally we obtain u(;—F +2F=0.
u

2 2
(i) AG = 96 Giv grad u + d—G(grad u)%, where div grad u = 2=, and
du du? u
2
(grad u)® = &. Consequently, AG = 0 implies 1 d—G+ d—G:O.
udu du?

7. Veify that the following fields are bi-scalar, and write them in the

standard form ¢ grad v:

(i) V=(a-2yi +(@-2x] +xyk

(i) V=gradf+ fgradg

(i) V =rx(axr).

Hint. (i) Vrot V = 0. We write the equation of the surfaces, which are

orthogonal to thefield lines (a — z2)ydx + (a— 2)xdy + xydz = O, in the form
ydx + xdy+ dz

=0,
Xy a-z
we deduce A constant. From the relation
a-—z
V = 0] grad&
a—z
we identify ¢ = )
Yo (a- 2)2

(i) rot V =gradfx grad g, hence Vrot V = 0. The surfaces orthogonal to
the field lines have the equations fe® = constant, hence V = ¢ grad (fe9),
wherep = €9,

(iii) WriteV =r?a — (ar)r ; the orthogonal surfaces are cones of vertex 0
and axis a, of equation ar =Cr, where C = constant. Like before,

- =

a-r

V =¢grad r ,where g =r°.

8. Let {ép, €y, €} be the local base in spherical coordinates (p, ¢, 0),

cgsZee &, — 2cosd & beavector field. Show that V is bi-scalar
sin

and find the scalar fields f and g for which V =f grad g.

and let V =
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§ IX.3. Particular fields

CO_SG &,, henceVrot V =0. Using the formula
psSing

dr = &,dp + psint&,do + p&do,

Hint. rot V =—

the equation VV df = 0, of the surfaces orthogonal to V , becomes
dp _sin2 .
p  C0S20
This equation has solutions of the form p? cos20 = C, i.e. g =p” cos 2.
From V =fgrad (p®cos20), where
grad g = 2p(cos26€, — 2snfcosh &),

we deducef =

2psing’

9. Show that the field V = %—3(61;)?, where 3 is a constant vector,
r r

and T isthe position vector , is harmonic, and find a scalar potential of V .

- =

Hint. rot V =0, divV =0; V =grad U, whereU = a_-3r + const.
r

10. Determine the harmonic functions (scalar fields) which depend only on
one of the spherical coordinates p, ¢ or 0.
Hint. If U depends only of p, then the Laplace equation, AU = 0, reduces

to 2[p2 )0,
op op

If s0, it follows that U(p) = L+ c,.
p

Similarly, U(p) = ¢c,0 + ¢, and U(0)= ciintg g +C.

11. Determine the field V: R® — <7, for which
rotV =(y—2i +(z-x) j+(x-y) k and divV =-2z—x.
Hint. Decompose V =V, + V,, where
rot Vi =0, divV; =-2z-x,
and
rotVo =(y—2) i +(@z-x) j+(x-y) k, divV, =0.
It follows that V; = grad ¢, where A = —2z— x. Taking

1 1
-l 1p
®o 5 3
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Chapter IX. Elements of field theory

we obtain ¢ = @g + ®, where A® = 0. Consequently,
Vy=— %xzf —Zk +grad @.
On the other hand V,, = Vj; + grad v, where V; = Wi + W, | + Ok isa
particular vector potential of (y—2) I +(z—x) | +(x—Y) k. In particular,

72 z of  ag
W= — —xz+ g(x,y) and W, = — —yz+ f(X, y), where — ——= =x —.
1= 9(x, y) 2= —yz+ixy) X oy y
%2 y2
Taking for examplef = 7,g: 7,weobtain
2 y2 2 2

7 Z - Z X hd
Vo=(— —xz+ =) +(— —yz+— + grad v.
z(2 2) (2 yz 2)1 grad y

Condition div V,, = 0 leads to Ay = 2z, which is verified by yo = Z, hence

y=2Z+W¥, where AY = 0. Since grad y, = 2zk , we obtain
2 V2. . 72 W2 .
V2=(7—xz+ )i +(?—yz+7)j +2zk + grad .

2
The solution of the problemis
\7=\71+\72=
x2 y2 72 .72 NG -
S+ o x) T+ (= —yz+ ) J+(2z- D)k + grad E,
(T ot T+ (S vz D) [+ (@2-Dk+ g

where Z = @ + ¥ is an arbitrary harmonic function.
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CHAPTER X. COMPLEX INTEGRALS

§ X.1. ELEMENTSOF CAUCHY THEORY

By its construction, the complex integral issimilar to thereal lineintegra
of the second type. And yet, the properties of the complex integrals of the
derivable functions are so important from both theoretical and practical
point of view that they are frequently qualified as nucleus of the Classical
Mathematical Analysis. As examples of remarkable results we mention the
fundamental theorem of Algebra (D’Alembert), the unification of the
integral and differential calculus (Cauchy theorems allowing the evaluation
of some integrals by derivations), and the applications to the real integral
calculus (including some improper integrals). This part of the Complex
Analysisis known as Cauchy Theory.

We begin by introducing the complex integral in its most general sense,
I.e. for arbitrary functions:

1.1. The construction of the complex integral. Let f: D— C be acomplex

function of a complex variable (D < C), and let y < D be a smple piece-
wise smooth curve (the matter about plane curves in 8VI.1 remain valid
since R? ~ C). Wenoteby ¢: |—>D, wherel =[a, bjcR,and ¢ ()= 7, a
complex parameterization of y; more exactly, ¢ (t) = o (t) +1i S(t), where

{X:““) te[a,b]

y=p(@) "
represents the real parameterization of y (refresh 8 1.2 for more details).
A partition of y isdefined as afinite set of pointson y, which is noted
S={z =ot)ey:k=0n,a<tg<ty<..<t,=b},
where A = ¢(a) and B = ¢ (b) are the endpoints of y. The number
v(8) =max{|zx —z_q|: z €5, k=1n}
Is called norm of the partition o .

With each partition we associate systems of intermediate points, which
are sets of theform (see Fig. X.1.1)

& ={Ck=pO) ey k=1Lnt 1 <O <t}
Finally, the numbers

n
o, (8,7) =D (&) (z — %)
k=1
are called Riemann integral sums of the function f on the curve y, attached
to the division 6 and to the system &/ of intermediate points.
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A B=o (b
y=1Imz @ (b) R 4
Z 1 +b=t,
D <(P 1 bern
CKEY """"" Ok
Z, T
Y ¢
Y 57 «——itel t
g la=t,
N A= o(a) I
0 x=Rez
Fig. X.1.1.

1.2. Definition. We say that f is integrable on the curve y if there exists
the limit of the generalized sequence (net) of integral sums

[im 0,0 eC.
v(5)—>06f’y( 7)e

Alternatively, if we work with usua sequences of integral sums, then we
ask the uniqueness of this limit for all sequences of partitions (5,) with
v(6p) —> 0, and all systems of intermediate points.

If thislimit exists, then we call it integral of f on y, and we note it
jy f(2)dz .

The notation jQy f (z)dz is sometimes agreed, since the complex integral

isdefined on curves, by analogy to thereal lineintegral.

The first natural question about a complex integral concerns its existence
and evaluation. Thisis solved by the following:
1.3. Theorem. The continuous functions are integrable on piece-wise
smooth curves, and their integrals reduce to real line integrals of the second
type. More exactly, if f=P +1 Q, then

jy f(z)dz:jy de—Qdy+i_[dex+ Pdy .

Proof. If &, =& +in, = p(6), where k=1,n, then the values of f are
f (k) =P(k,mic) +1Q(&Ek.mk) -

Similarly, if we note z, = x, +iy, €8 foral k=1n, then

12 — 74| = \/(Xk — X 1)” + (Ve — Yk
hence v(8) equals the norm of & as partition of the real curve y in R?. If

we introduce these elements in the complex integral sums of f on y , then
we can separate the real and imaginary parts of these sums, and we obtain:
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o1, (0:7) = TP (& —&er) ~ Qe m) ik ~ )] +

k=1

n
+i > [Q(&k.mk) (Ek — &k-1) + P(Ek.m) (1 —1k-1)] -
k=1
It is easy to see that these sums converge to theread lineintegrals

J Pdx-Qdy="lim 3 [P(&me) (& = &k-1) ~ Qi) (i ~c-1)]
(6)—0 kel

.[dex+ Pdy = gm . D [Q(Ek:mk) (Ek — Ek—1) + P(Ewsmi) Tk — 1)1 -
1% —> k=1

These limits exist according to theorem >

1.4.Corollary. If f: D—C isacontinuous function, and y — D is a piece-
wise smooth curve of parameterization ¢: [a, b] > C, then

[, 1@dz= [ (1 e0)0 0 Oct .

Proof. The complex parameterization ¢ (t) = o (t) +i S(t), te[a,b], comes
from the real parameterization
{X:aﬂ)
y=p(@"
hence the hypothesis that y is piece-wise smooth means that the functions
o and B (and consequently ¢ ) have continuous derivatives on a finite

number of subintervals of [a, b]. The real line integrals from the previous
theorem become definite Riemann integralson [a, b], i.e.

J Pdx-Qdy=| :[P(a(t),ﬁ(t))a’(t)—Q(a(t),ﬁ(t))ﬁ’(t)]dt ,
J, Qo+ Py = [ (a0, B ' () + Pla(t). BO) /)] ot

To accomplish the proof, wereplacef =P +i Q,and ¢’ = &’ +i B’ in
these integrals, and restrain the result in a complex form. &

te[a,b],

1.5. Example. The function f: C\{z} > C , of vaues f(2) = (z—zo)‘l,
Isintegrable on the circle C(z, r), centered at z,, of radiusr >0, and
dz :
I =2ri .
C(zr) z—2z,
In fact, the integral exists because f is continuouson D = C\ {z}, hence

aso on C(z, r), and the circle (traced once) is a ssmple smooth curvein D.
Using the complex parameterization of thiscircle

o(t)=zy+re't, te[0, 27]
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we obtain ¢/ (t)=rie't, and (f c@)(t) = % . Consequently, according to
re

the formulafrom Corollary 1.4, the value of the integra is

| dz =j2”idt=2m.
C(zr) z—z5 70

The genera properties of the complex integrals correspond to the similar
properties of the real line integrals of the second type:
1.6. Theorem. The following relations hold for continuous functions on
piece-wise Smooth curves:

(i) jy (of +ﬁg)(z)dz:ajy f (2)dz+ ﬁjyg(z)dz,Va,ﬁ eC, vf,geC2(y)
(known as linearity relative to the function);

i f(zydz=[ f(2)dz+ [ f(2)dz, vfeC?

(i) [ f@dz=] f@dz+[ f(2)dz, vfeCe(nur)
(called additivity relative to the concatenation of the curves);

(iii) jy_ f(2)dz= —jy f(2)dz, vf eC2(y), where yand y ~ are contrarily
traced (named orientation relative to the senseon y).

Proof. Without going into details, we recognize here the similar properties

of the real line integrals of the second type, hence it is enough to recall the
connection established in Theorem 1.3. &>

The following property of boundedness reminds of real line integrals of
the first type, sinceit involves the length of a curve.
1.7. Theorem. (Boundedness of the complex integral) Let f and y beasin

the construction 1.1. If M =sup f ()| , and L isthelength of y, then
Zey

ny(z)dz‘SM-L.

Proof. Because | = [a, b] isa compact set in R, and the parameterization ¢
Is continuous, it followsthat ¥ = ¢ (1) isacompact set in C. The continuity
of | f| assuresthe existenceof M <oo, suchthat |f({)|<M atal S ey.

Since the smooth curves are rectifiable (i.e. they have length), there exists
def . n

L = sup{) |z« — 2 1|1z €S} <.
5 k=1
Consequently, for the modulus of the integral sums, we obtain

n n
01,6, X F(C] [z~ 2zl <M Y]z~ 7/ <ML,
k=1 k=1

where it is enough to take the limit v(6) — O. >
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1.8. Corollary. Let D be a domainin C, and let y —c D be a piece-wise
smooth curve. For each neN, we define a function f, : D—C, which is
continuous on ¥ . If the sequence (f,,) isuniformly convergent on y, then

lim jy fn(z)dz=J'y lim f,(2)dz.

Nn—oo
u.

Proof. By hypothesis, f = lim f,, means that for each ¢ > O there exists
Y N—

No (&) €N, such that n > ng (&) implies
not

M = swplfa(@)- () <

Zey
where L stands for the length of . According to theorem 1.7, we obtain

‘j fn(2)dz— | f(z)d# <e,

¥ y

which is areformulation of the claimed equality. &
1.9. Corollary. Let function f be analytically defined by

(2= a, (z-2)".
n=0

If ¥ isa piece-wise smooth curve in the disk of convergence of this power
series, then we may integrate term by term, i.e.

jy f(z)olz:njzJ a, Iy(z—zo)”dz.

Proof. The partial sums of the given power series can play therole of f,, in
the previous Corollary. &

1.10. Remark. An important property of the real line integrals of the
second type concerns the independence on curve. In § V1.3, we have seen
that this is the case of conservative fields, which derive from a potential.
Simple examples (see the problems at the end, aswell as | =0 in Example
1.5, etc.) show that the complex integral generally depends on the curve of
integration. However, if the integrated function is C-derivable, then its

integral does not depend on curve, but only of its endpoints. The following
theorem states conditions for this case, which will be assumed in the entire
forthcoming theory:

1.11. Cauchy’s Fundamental Theorem. Letf: D— C, where D < C, be a

C-derivable function, and let y — D be asimple, closed, piece-wise smooth
curve. If theinterior of ¥ isincludedin D, i.e. (y) < D, then

ny(z)dzzo.
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Proof (based on the additional hypothesisthat P =Ref ,Q =Imf e Cﬂlq{(D) ).

The integrability of f on y is assured by Theorem 1.3. The additional
hypothesis allows us to use the Green’s formula from § VI11.2, which gives

J.y Pdx—Qdy = — ”(y) {%+%}dxdy

Becausef isderivable on D, hence dso on ( ), it follows that the Cauchy-
Riemann conditions hold, hence the double integrals from above vanish. It
remains to use Theorem 1.3. &>

1.12. Remark. The assertion of the above theorem is correct without
additional hypotheses, but the proof becomes much more complicated (see
for example [CG], [G-9], [H-M-N], [MI], etc.).

Before discussing more consistent consequences of the above Theorem
1.11, we mention several immediate corollaries, which are also significant
for the relation between complex and real integrals. These properties hold
on domains of a particular form:

1.13. Definition. We say that a domain D — C is simply connected if the
interior of every closed curvefromD isadsoinD, i.e
ycD = (y)cD.

In the contrary case, when there exist curves y < D for which (y) ¢ D,
we say that D is multiply connected (anyway, D is connected, since domain
means open and connected). Here we avoid further considerations on the
order of multiplicity (based on homotopic curves), and other properties of
the domains, but the interested reader may consult [BN], [G-F], [LY], €tc.
1.14. Examples. (@) The following sets are ssimply connected:

e C,C,{zeC:Rez>0}, and other half-planes;

e Disks(i.e. interior of circles), and interior of simple closed curves;

e Arbitrary intersections of simply connected sets.

(b) Most frequently, the multiply connected sets have the form:

e C\{z}, C\F,whereF c Cisfinite, C\N, etc.

e D(z,r) \{z}, i.e disks without center, D(z, r) \ F, where F isa

finite (or even infinite) set of “missing” points;

e Connected sets with “missing” points or “missing” sub-domains.
1.15. Corollary. If D < C isasimply connected domain, andf: D—>Cisa
derivable function, then:

(i)  Theintegral of f does not depend on the curve;
(i) f hasprimitivesonD ;
(ili) The Leibniz-Newton formula holds for theintegral of f.
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§ X.1. Elements of Cauchy theory

Proof. (i) Let 11 and > betwo curvesin D, which have the same endpoints,

say A and B. The curve y =y, Uy, , obtained by concatenation, is closed,
and since D is simply connected, we have (y) < D. According to Theorem

from Theorem 1.6, Weobtaln jy f(2)dz -jy f(z)dz =
(i1) Wefix z, €D, and we prove that the function F: D— C , of values
VA
F@ =], f(£)ds

is aprimitive of  , i.e. F isderivableon D and F' =f . In fact, for each
Z,e D, there exists dg(z) > 0, small enough to assure the implication

AZ < 8(z2) = z+AzeD.
Because IZZMZdQ’ = Az holds at all zand Azin C, we may write
not.
E(2A7) = (F(z+A2)-F(2)
| Az
A A
= AT Q- AT H@de = AT TR0 - 1@k

Using the mdependence on curve of the last integral, we may evaluate it
on the straight-line segment [z, z + AZ]. For this integral, the Property 1.7,
of boundedness, holds with L =|AZ, hence

f(z)‘ =

z+ Az
[

not.

E(zA2) <M = max{|f(¢)— f(2)|:¢ e[z z+AZ]} .
The derivability of f implies its continuity, hence for each ¢ > 0 thereis a
5 (¢) > 0, such that |AZ <min{5(¢),80(2)} implies |f(z+A2)- f(z)|<e. In
this situation, afortiori |f (') - f (2)| <, hence

F(z+Az)-F(z) "ot

f(z2)= lim = F (z)

Az—0 Az
(iii) We have to show that the formula

J; f(2dz=G(z)-G(2)

holds for arbitrary z,z, € D, and for arbitrary primitive G of f . In fact, the
previous property (ii) points out a particular primitive of f, namely

F(2)=, 1(0)d.

Because the difference of two primitives of the same function is a constant,
i.e. (F—G)' = 0impliesthe existence of CeC, we have F(2) - G(z) = C at
al zeD. In particular, wetakeherez=z;, andz=12z. &>
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Chapter X. Complex integrals

We start the series of mgjor consequences of the fundamenta theorem by
the case of amultiply connected domain:

1.16. Theorem. Let Dc C be a domain, and let 7, y, ..., v, be pair-wise
digoint closed (and, as usually, simple and piece-wise smooth) curvesin D.

n
If f: D— C isaderivable function on D, and (y)\{U(yk)}c D, then
k=1

n
f(z)dz = f(2)dz.
J,1@e=3] 1@
Proof. The idea is to apply the fundamental theorem 1.11 to f and some
closed curve I' , for which (I') = D. To make it possible, we take A, €y

and B, €y, for each k=1,n, e.g. the closest points between y and ¥, and

we connect them by straight-line segments (as in Fig. X.1.2). The sought
for curveI results by the following concatenation:

=7 paUALBIUYL UIBLATUY| AA, V- VLB AL

A

Fig. X.1.2.

Consequently, according to 1.6 (ii), we can decompose the integral on I
in asum of integrals on the constituent arcs. Because the segments [Ax, Bx]
and [By, Ac] are oppositein order, we have

I[A(.Bk] f(z)dz+j[BkM f(2)dz =0.
In addition }/‘AhAi U}/‘AiAZ UU]/‘Aq_lAq =7, hence
| f(2)dz+ | f(2)dz+..+ f(2dz=| f(2)dz.
y‘AﬂAl 7‘/%2 7‘&1_1/%1 Y

To complete the proof, we apply the property 1.6 (iii) on 7, , Vk=1,n,
and the fundamental theoremonT , i.e. | L f(@dz=0. &>
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§ X.1. Elements of Cauchy theory

1.17. Remarks. The main applications of the above theorem consist in
reducing the integral on y to integrals on y., which in genera are simpler.

In particular, if n =1, then L f(2)dz= L f (z)dz, whenever (y)\(y;) = D.
1

This property is frequently formulated in terms of continuous deformation
of y to y1, redized inside D. For example, using 1.5, we obtain that

J. dz =2ri
v -1
holds for arbitrary curve y under the condition z; € (y). To complete the
list of values of thisintegral, we mention that it vanishes if z, ¢(y),i.e z
IS exterior to y, and the case z; € y is undecided (see the next section).
The next theorem, by Cauchy too, states a remarkable relation between
integrals and derivatives:
1.18. Theorem (Cauchy formulas for derivable functions). Letf: D—C
be a derivable function on the domain Dc C. If y isaclosed (ssmple and
piece-wise smooth) curvein D, such that (y) < D, then the formula
! f(2)
£ (z5) =" dz

(ZO) 271 jy (Z—Zo)n+1
holds at every z; € (y), and for arbitrary neN .
Proof. Case n = 0. We have to show that

[ N2 47— t(20)- 211 .

Y z2—-17
Using the result in Example 1.5, and Remark 1.17, this relation becomes

f(2) dz

——dz="f :

(= . (z0)-
Becausef isderivable at z,, there exists M > 0 such that the inequality
f@-f@)_\,
|z |

holds at all z in a neighborhood of z, . If we replace y = C(z, r), then
according to Theorem 1.7, we have

LR
Clzr) z-7
It remainsto take r — 0.

The remaining cases involve mathematical induction and will be omitted
(the interested reader may consult [CG], [G-5], etc.). We mention that an
important part of the proof concerns the implicit assertion of the theorem,
namely the existence of all higher order derivatives a each point of the
domain wheref isonce derivable. &
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Chapter X. Complex integrals

1.19. Corallary. If the function f: D— C is derivable on the domain Dc C,

then it is infinitely derivable on D, i.e. there exist f("(z,) at each zeD,
and for all neN .

1.20. Remarks. We may use the Cauchy formulas for derivable functions
to evaluate complex integrals by the simpler way of derivation. The casein
1.5 isimmediately recovered from Theorem 1.18, applied to the identically
constant function f:C —{1}; no derivation is necessary. The same theorem,

applied to the same function, leads to

I L:o
C(z.1) (z- ZO)n+1

atall zeC,andforalr>0,neN.

A lot of complex integrals allow the form of the Cauchy formulas, hence

we can cal culate them by derivations. For example,
1

dz I
IC(i,l) —(22 +l)2 = IC(i,l) —(Z— i)2 dz=2ri {
followsfor z =i, n=1,and f(z)=(z+i) .

The Cauchy formulas have important theoretical consequences:
1.21. Theorem (bounding the derivatives). Let f: D— C be a derivable

function on the domain Dc C, and let zeD. If y=C(z, r), and r is small
enough to ensure theinclusion (y) < D, then

‘f(“)(zo)‘s n Mr(nzo’r) 1

/
1
(z+i)2Li

where M (Zg,r) =sup{|f (2)|: ze C(z,r)}, and neN..
Proof. If we apply Theorem 1.7 to the Cauchy formulafor f @, then we get

! f(Z)|
§(n) SLI.L. |—; C
10 (z)|< - Lesup Pl

whereL = 2z r isthelength of y. &

1.22. Theorem (Liouville). If afunction is derivable on the entire complex
plane, and bounded, then it is necessarily constant.

Proof. Using the hypothesis of boundedness, we may note M = sup|f (z)|,
zeC

such that the inequality M (zy,r) <M holds for arbitrary zeC, and r > 0.
According to the previous theorem, written for n = 1, we have
‘f /(zo)‘sM 5 0.
N roow
Consequently f /=0 on C, hencef reduces to a constant. &
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§ X.1. Elements of Cauchy theory

Finally, a remarkable consequence of the Cauchy Theory is the following
property of C of being algebraically closed, which is considered to be the

fundamental theorem of the Algebra:
1.23. Theorem (D’ Alembert). Every polynomia P, , of degree n> 1, with
coefficientsfrom C, has at least oneroot in C.

Proof. In the contrary case, when P, never vanishes on C, we can define a
function f: C— C, which takes the values f(z) =1/B,(z). According to the

algebraic properties of the derivable functions (discussed in Chapter 1V), it
follows that f is derivable on C. In addition, f is bounded. In fact, because

lim B,(2) =, wehave lim f(z)=0, hencethere exists somer > 0, such
Z—>®© Z4—©

that | f (z)| <1 whenever |7 > r. The boundedness of a continuous function
on compact sets guarantees the existence of anumber M, > 0, such that
(I4<r)= ([f(@]<M,).
Sincef isderivable and bounded on C, the Liouville's Theorem says that
f isconstant, which is not the caseif n> 1. >

The list of consequences of the Cauchy’s fundamental theorem continues
with many other remarkable results, including those from the next section.
Without going into details, we enounce here an extension of the Corollaries
1.8 and 1.9, which shows that the Cauchy Formulas “resist” to a limiting
process:

1.24. Theorem (Weierstrass). Let Dc C be adomain. If:

(i) y isaclosed (simple and piece-wise smooth) curvein D, and (y) c D;

(i1) f,:-D—C arederivableon D, VneN;
u.

(iii) thereexists F = lim f,;
Yy N—o

a.u.

thenthereexists ¢ = lim f,,, such that
() now

(@ ¢:(y) > Cisderivable;

a.u.
) o® = 1im % | vkeN; and

(y) n—ow

© o™ (2)= Zﬁi I, (;f)?ﬁl e, vze(y), andvk eN .

In particular, we may apply this theorem to series.
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PROBLEMS 8X.1.

1. Evaluate theintegralson [0, 1] of the following complex functions:
(@) f(t)=:i:,(b) g(t)=e'"", (¢) h(t)=sin(i+t), (d) Sign(it)=ﬁ-
Hint. Identify the real and imaginary parts of the given functions, and

2_
integrate them separately. In the example (a), from f(t):t2 1+i 22t :
t°+1 t°+1
we obtain
2
1 1itc-1, .1 2t _ 1 .y .2 1
J'Of(t)dt:jomdtJrlJ'Oterldt = (t—2arctgt)|; +iln(t* +1) o

2. Evaluate the complex integral | (y) = I y|z| dz along the following curves:

(a) Straight-line segment y=[H, i] ;
(b) Left-hand half-circle centered at O, of radius 1 ;
(c) Broken line y =[-1,1] U[L,i].
Hint. Theintegral refersto the real function |2, but the variable is complex.

Replace z and dz from the parameterization of the curve, according to the
formulasin 1.3 and 1.4.

. Study whether | (i +2)dz depends on y or not, where y is a curve o
3. Study whether [ (i+2)dz depend here 7 | f

endpointszyp =0andz; =1+i.

Hint. According to theorem 1.11, since the function i + Z is not derivable,
there are chances the integral to depend on the curve. To point out this
dependence, evaluate the integral on the straight-line segment [0, 1 + i], on
the broken line [0, 1] U[1, 1+i], and on arcs of parabola, circle, etc.

4. Let y beaclosed (simple and piece-wise smooth) curve in C. Show that
the area of (y) hasthe expression
Azi_ zdz .
2177
Hint. If we note z= x + iy, then Theorem 1.3 leads to real lineintegrals
zdz= d dy+i| —yd dy.

jyz z jyx X+ Y y+|jy ydx + xdy

The real part of this expression vanishes as an integral of atotal differentia
X dx + ydy:%d(x2 +y2).

According to Proposition V1.3.15, the imaginary part equals 2A .
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§ X.1. Elements of Cauchy theory

5. Some of the following complex integrals can be calculated by Leibniz-
Newton formulas. Identify them, and find their values.

|1—f e‘dz: 1,= I e‘sinzdz: I;= _[zc057r22dz 4= _[1% I5= I\/Edz
z
Cc(0)
Hint. The method isworking for I, (asin R), I, (by parts), and I3 (changing

i =( ). In 4, the domain C \ {0} isnot simply connected, and in |5 we
have a multi-valued function. However, there exist convenient cuts.

6. Evaluate I(r):fc(Or) zzd—il,where O<r=1.

Hint. If r €(0,1), then I(r) = 0 according to the fundamental theorem 1.11.
If r > 0, then using theorem 1.16 with convenient r,, r, >0, we obtain
dz dz
'(r)‘jcla,rl) E+JCZ<—i,rz) 21
Taking into account the example 1.5, and the decomposition
1 41 41
2241 dz—i 2z4i’

wefind I(r) = 0 again.

7. Using the Cauchy formulas, evaluate the integrals.

| = J‘ dz = J' dz
1= ’ 2~ & A
2-14i[=2 2> —27°+27° - 32+2 c(01) 7> +27°
1 sinrz z
3= _[ ——dz; 1= I dz I5= I —ﬂzdz.

c(oy N4 cloy 29N? 214 (-1

Hint. In 1, use the Horner schema to find the roots of the denominator. In

I, , the Cauchy formula holds with zy = 0, and n = 2. In |3, put forward the
VA

function —2—. In 1., we have lim < _1=1, andinlg, im2N72__1,
sinz z—0 SNz z-1 z-1
8. Evaluate | _F) —22_d¢ , where F(¢) = Z (G gL
37-2(26 — 1)° k—0 2K+ 1
Hint. The power series of F is convergent in the unit disk, where we can
use the Weierstrass theorem. Take into account that F (z) = 1 1 5 -
+2
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This section is a further development of the idea of reducing the integrals
to derivatives via specia (namely Laurent) power series. The theoretic
basis follows from the Cauchy theory, which has been sketched in the
previous section. From a practical point of view, the interest is to gain new
powerful tools for the calculus of complex aswell as real integrals.

2.1. Theorem (Laurent). Let D < C beadomain, and let z, € C be a point

such that ®(zy,r,R)c D for some r,ReR,, r <R, where
no

t.
O(zy,1,R) = {zeCir<|z—7|< R
represents the crown centered at 7y, of radiusesr and R (asin Fig.X.2.1). If
f: D—>Cisderivableon D, then, at each ze ®(z,,r,R), itsvalueis

f(z):...+A+...+£+ao+a1(z—zo)+...+a (z—29)" +...
(z-7)°  z-7 "
Proof. We express f (2) by the Cauchy formula, using the closed curve
'=CruU[AB]UC, U[B,A] .

A
Im z

Fig.X.2.1.

Infact, ze (I') c ®(z,,r,R) < D, hence Theorem X.1.18 gives

1 f
Because IF:ICR+I[A,B]+IC,‘+I[B,A] and _[[A,B]+_[[B,A]:O,weobtain

211°Cr -2 2ri°C -2
In the last integrals, ¢ has different positions relative to z, and z, namely:
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§ X.2. Residues

Casel. ¢ Cr, hence [z—z| <[ — 7| Consequently, in [ wehave
R

1 1 _ 11
(-2 (-2-(z-%) (-7 ¢ 2"%
-2

-

<1, thelast fraction is the sum of a geometric series, i.e.

-7
S W k) ( _20]2+...+(ﬂ]n+...
1. 270 -7 \(C-17 ¢ -7
¢ -2
holdsfor al ¢ € Cg, in the sense of the uniform convergence. If we put

1 1 Nk (z-z)"
(-2 (-7 (C-z) €zt

in | . »thenwemay integrate term by term, and so we obtain
R

Because ‘

S {9 PR N
reile % = Zanz-w)",
where
_1 f($)
il 2

We claim that this series (of positive powers) is a.u. convergent relative
to ze ©(zy,r,R) . In fact, the remainder of order n equals

def. o
@)
Ry = Yalz-z)=-1 Y (-7 dc .
’ k=n+1 2 Ik n+1 IC (C )k+1
Using the a.u. convergence of the geometric series on @)(zo, r,R),wefind

_ 1 (2" § _
= d
27TiJ.CR (éz_zo)n+2 Z é/ Z() é/
BEN PN GIEST? "
27i°Cr £ -2\ £ -7 '
If we note | —2|=p, then we have |{ —75|>R—p. According to
Theorem X.1.7, the following inequality holds
1 M n+1
IR, |<——(3j 27R,
2r R—p\ R
where M =sup{|f ({)|: ¢ € Cr} . From p < Rwe deduce lim 9R,=0.

Nn—oo
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Chapter X. Complex integrals

Casell. ¢ eC,, hence|¢ — 7| <|z- 7| Inthiscase, in [ wewrite

-1 1 _ 11
(-2 z2-7-({-2) z-% 1 6%
-2

Considerations similar to those from Case | lead to the development
_ *a

L[ Qg P

27i7C ¢ -2 o1 (2= 29)P

where
Ay o 106 -2)" e

A similar evaluation of the remainder
def . 0

a_

k=p+1 (Z— Zo)k

leads to the conclusionthat lim v, =0.
nN—oo

Combining the two cases, we obtain the proof of the claimed equality

f(z)-z = +Zan(z 7)"
pl(_ )

in the sense of the a.u. convergence of each serieson O(z,,r,R). <

2.2. Remarks. We usually refer to the series
ap ay n
+——— .+ ——+ag+q(2-Z) +...+a,(z2—75) +...
(z-27)° 2= 179
introduced by Theorem 2.1, as a Laurent series. This series has two entries,
and its convergence means concomitant convergence of the two series,

Zan (z—25)", called regular part (Taylor, of positive powers, etc.),

and Z X )p , called principal part (of negative powers, etc.).
-7
Theformulasfor a, and a_, are similar, viathe correspondence n«~» —p.

Theintegral in a, looks like the Cauchy formulafor f™ (z), but generally
speaking Theorem X.1.18 cannot be applied, since (Cg)z D.

The coefficient a_; hasadirect connection with the integral of f , namely
1
aq{=—- f(£)dcs .
=5 e (O
Its special utility in evaluating integrals justifies its distinguishing name:
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2.3. Definition. Let us consider D, z,, ©(z,,r,R), and f, as in the above

Theorem 2.1. If the hypotheses of this theorem are satisfied for arbitrarily
small radiusesr > 0, r < R, then we say that the Laurent seriesis developed
around 7, . In this case, the coefficient a_; of the corresponding Laurent
seriesiscaled residue of f a 7y, and we note
a_ =Rez(f,z)=Rezf(z), etc.

2.4. Example. Function f(2)=(z?—-3z+2) ! isdefined on C\ {1, 2}. To
obtain its Laurent seriesin ©(0,1,2) , we decompose it in simple fractions

1 1

f()=—-——"—.
(2) z2-2 z-1

Because 1< |z| < 2, these fractions represent sums of the geometric series

1 -1 1 1[ z (ZJZ ]
= = =—\1+—+|=] +...|,
z-2 21-(z2) 2| 2 (2

1 1 1 1[ 1 (1)2 J
== =—|1+—+| =] +...].
z-1 z1-(Vz) z| 1z \z

Consequently, the Laurent series of f in the crown ©(0,1,2) gives

2 2
f(z)=...+(1J 11 z z
y4
The coefficient a_; = 1 from this Laurent series does NOT represent the
residue of f at zy= 0, since the development is not valid around z,. To get

this residue, we write the geometric series for |7 <1 (which implies |7 < 2),
1 -1 1 1 z 7

z-2 21-(zZ2) 2 4 8
i=1+z+22+...
1-z
The resulting Laurent series (around 0) has only positive powers, namely
1 3. 7
f(2)==+—z+=-2+...
2 4 8

henceRez (f, 0) = 0.
To obtain Rez (f, 1), we consider |z—1<1 in the geometric series
1 -1
2—2_1—(2—1)
and we write the Laurent series of f around 1, whichis
F(2)=—L -1 (z-1)—(z-1)2—...
z2-1

Consequently, Rez (f, 1) = —1.
Similarly, wefind Rez (f, 2) = +1.

= —1-(z-1)—(z-1)*-..
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Chapter X. Complex integrals

2.5. Remark. We can develop a function f : D—C around z, €C in the

following cases only:
1. 2D,
2. Zp isapole, or
3. Z isan essential singular point.
In thefirst case, z, isaregular point, and the Laurent series contains only
positive powers; more exactly, It reducesto aTayI or series

£(2)= f(z0) + (20)(z 20) + (20)(z 20)2+

In fact, according to the fundamental theorem X.1.11, the coefficients of
the Laurent series (see Theorem 2.1) have the values

1 N R
a;p—EETL;f(gy(g—aﬂ d¢ =0, vpeN
and according to the Cauchy formulas X.1.18,
(n)
S Y SR {03 P L) SN
2m17Ce (¢ = z5)"*t n!

Except Case 1, z, can be univalent isolated singular point. The principa
part of the Laurent series around z, cannot vanish any more, and the single
difference we can make refers to the number of terms. If the principa part
of the Laurent series around 7, has afinite number of terms, i.e.

f(z)_a— T +ag+ay(z—2Zg) +...+an(z—25)" +
(z-2)° 2= 179

then lim (z—zo)pf(z):a_p Isfinite, hence z, isapole (Case 2).
-2,

The remaining possibility for the principal part of the Laurent series
around 7, is to contain infinitely many terms. Here we recognize Case 3,

when lim (z—27,)P f(2) doesnot exist, VpeN .
27,

The evaluation of the residues at poles reduces to derivations:
2.6. Proposition. If f: D— C hasapole of order p at z,, then

1 dP?
Rez (f, 2) = (2-20)P-1(2)]
p-1
( 1)| d Z—Z,
Proof. By hypothesis, function f has the development
F(D=P B ya a2 2g)+ .t an(z—2)" +

(z-7)°  z2-%
The resulting development of the function ¢(2) = (z—zy)P f (2) has Taylor
coefficients, hence a_; = (go(p_l)(zo))/(p—l)! . &
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2.7. Corollary. The residue of a meromorphic function, say f :g , Where
Aand B arederivableon D, at asimplepolez, D, is
Rez (f, z) = ﬂ .
B'(2)
Proof. It is easy to see that f has a pole of order p a z, iff F=1/f hasa
zero of the same order at this point. In our case, this means that
A(zp) #0, B(zy) =0, and B/ (z) #0.
To complete the proof, we take p = 1 in the previous proposition. &

2.8. Examples. (i) Function f(2z) = si—ilz has a ssimple pole at z,= 0 (divide

power series, if not convinced). The above corollary givesRez (f, 0) = 1.

(if) The same point z,= O is double pole of the function g(z) =— 5 - For
sinz
p = 2, the formula from the Proposition 2.6 leads to
2 2 5.3 2
Rez (g, O)=i z — lim 2zsinz° —2z°cosz o
dz| sinz? z—0 sin? 22

In this case, the method of operating with series seems to be a smpler
than deriving. In the Laurent series we may look only for a_; =Rez (g, 0).
(iii) To find the residue of afunction at an essential singularity, we have to
develop in Laurent series, and identify the coefficient a_; . For example,

00 k 2k+1
h(z) = snl= Zi(l}
z (Tok+DI\z
has an essential singularity at zy=0, anda_; =Rez (h, 0) = 1.
2.9. Remark. Aswe have aready mentioned in § IV.5, the classification of

the singular points refers to the point at infinity too. In particular, «o can be
univalent isolated singular point of afunction f: D— C , which means that

there exists somer > 0 such that

not.
C(C(Or)) ={zeC:|Z4>r} <D.
This condition shows that « isthe only singular point in a neighborhood
def .
V(ewo,r) = C(C(O,r)) w{o} .
In the spirit of Theorem 2.1, we may interpret C (C(0,r)) as a crown

®(0,r,), and the Laurent series as a development around oo . If this series
contains only negative powers of z, i.e. it has the form

a a
f(D)=.+—P 4.+ 1q,,
zP z
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then we consider that « isaregular point (since f («) = ag makes sense).
In the contrary case, when positive powers do exist, we consider that «
iIsasingular point, and we make the distinction between pole and essential
singularity by the number (finite or infinite) of positive powers.
For example, in the crown ©(0,2,), the function f(z)= (z2 -3z+ 2)‘1
from 2.4, has the devel opment

fgott 1 1 =Z—12+

z1-(2/2) z1-(V2)
Conseguently, oo isaregular point of f . On the other hand, « isasimple
pole of the function 22/(2—2) , and essentia singular point of €*.
Recalling the fina part of the Remark 2.2, we may speak of residue at oo,
which should be naturally related to the integral on C, . Because the border
of ®(0,r,«) is C (0,r), this“residue’ should assure the relation
1
Rez (f, = f(£)ds .
ez (f,0)= o[ o T
More exactly, the expression of the Laurent coefficients in Theorem 2.1,
are suggesting the following:
2.10. Definition. Let o be univalent isolated singular point of the function
f:D—C, andlet r >0 be a number for which ®(0,r,«) cD. If a_; isthe
coefficient of 1/zin the Laurent seriesof f in ©(0,r,x), then—a_; issad

to betheresidueof f a -, and we note
def .
Rez (f, ®) = —a_ .
Alternatively, if we note g(2) = f (1/2), then the change { =1/z leadsto

_ 9(2)
IC_(O,r) f(C)dC = J.C(O}) 7d2 )

hence we may define the residue of f a o by the coefficient b; in the
Laurent series of g in the crown ©(0,0,1/r).

Thereis no formula similar to that in Proposition 2.6 for the evaluation of
theRez (f, «), so we have alwaysto realize Laurent series around o .

2.11. Examples. (i) For the above function f(z) = (z2 -3z+ 2)_1 (compare
to 2.6 and 2.9) we haveRez (f, ) = 0.

(i1) The value Rez (22/(2— 2), ©) = 4 results from the development

3+
;3

22/(2—2) = z+2+ﬂ+%+...
Z 7

which holds in ®(0,2,0). The variant of replacing z+1/z leads to the

same result, but it is based on the development of the function 1/z(1-22)
in the crown ©(0,0,1/2), namely
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§ X.2. Residues

1 :£+2+4z+822+...
z(1-22) z
(iii) oo isan essential singular point of €%, and Rez (€%, «) = 0 comes out

2
from the very definition of the function exp, namely 1+IZ|+%+ .., which

makes sense in the entire C = ©(0,0,00) U{0} .

The calculus of the integrals by residues is based on the following:
2.12. Residues Theorem (Cauchy). Let D < C be adomain, on which the
function f : D—C is derivable, and let y < D be a closed (smple and
piece-wise smooth) curve. If z,, %, ..., z,, are the only univalent isolated
singular pointsfrom (y),i.e. (y)\{ z, z, ..., z,} <D, then

| f(z)dz:ZﬂiZn:Rez(f,zk).
4 k=1

Proof. Let i = C(z, rW), k=1,n, be disoint circles (as in Fig.X.2.2), such

n
that () \ { U (yk)} — D . According to Theorem X.1.16, we have
k=1

J'yf(z)dzz kzﬂ[yk f(2)dz.

Fig. X.2.2.

By Theorem 2.1, the coefficients a'_‘l in the Laurent developments of f
around z., k =1, n, have the vaues

. 1 def .
as1=——| f(2dz = Rez(f,z).
27177«
Itisenoughto replacej f(2)dz inj f(z)dz . &
Yk /4
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2.13. Example. Let us evauate |, :_[y f(2)dz, where y, =C(0,n+3),
neN ,and f(2)= (22 ~3z+ Zyl-exp(]/z). The first step is to find out the
singular points of f , and the second one is to establish what singularities
arein (yy); finaly, we apply the Residues Theorem, and we make calculus.

Function f is not definable at the pointszy =0,z =1,2 =2,and «. The
nature of these points is. z, is an essentia singularity, z; and z, are smple
poles, and o is aregular point. Obviously, zy < (yq), {2.7} < (y1), and
{2y,21,2} < () foral n>2,sincef isderivablein C (C(0,2) ). Theorem
2.12 furnishes the following values of the integrals:

lo =2xi Rez (f,0),
l; =2xi [Rez (f,0) +Rez (f, 1)],
I, =27i[Rez (f,0) +Rez (f, 1) +Rez (f, 2)].
In addition, we havel,, =1, for al n>2, and alternatively,
l, = =271 Rez (f, »).
Now, we evaluate the residues. From the development in ©(0,0,1),

- _ 0 2n_1 1 B
it follows that Rez (f,0) = > -

n=1
Using the formulas for smple poles (see 2.6 and 2.7), we obtain

ReZ(f11)=%]/ZZ) :—e,andRez(f,Z)z—eXp(_j/lz)

_Je.

z=2

z=1
Finally, because in ©(0,2,.0) we have

1 3 1 1
f@Q=|=+—+... | | 1+—+ +... |,
@ (zz z3 j[ z-1 2221 ]

it followsthat Rez (f, «0) = 0. To conclude, we mention the values
2rile—+/e) if n=0
l,={-2rie if n=1
0 if n>2.
This example obeys the specific restriction in Theorem 2.12, which asks

the singular points of f be either in the interior or in the exterior part of the
(closed) curve from the integral. A natural problem isto find the values of

theintegralan:jZ f (z)dz, where y,=C(0,n+1), or Ln:J‘/I f(2)dz,

where A, ={z=x+iy:|x+|y|=n+1}, etc. To solve such problems, we
add a couple of improvements to Theorem 2.12:
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2.14. Semi-Residues Theorem. Let the objects D, f, y,and z, 2, ..., z,
satisfy the hypotheses of Theorem 2.12, and in addition, let Zy ey be a

simple pole of f. If zy isan angular point of y, where the tangent jumps by
0 radiansin the positive sense of y, then

n
jy f(z2)dz=2ri Y Rez(f,z) +(7—0)iRez (f,z).
k=1
In particular, if zy belongs to a smooth sub-arc of y, then

jy f(2)dz=2ri Zn:Rez(f,zk) +iRez (f,z).

k=1
Proof. The Laurent series of f around z, has the form
f()= 2L rag+az—2)+... ,
z-17, \
?(2)

where ¢ is derivable in a neighborhood of z, . Let y, be an arc of circlein
such a neighborhood, which isolates z, asin Fig.X.2.3. Obvioudly,

1—‘I’ :}/|ABU}/r

iIsaclosed (ssimple, and piece-wise smooth) curve, on which we have
n

[ f(2dz=27i Y Rez(f,z) .
I k=1

Fig.X.2.3.

On the other hand, we may decompose this integral in two parts
Irf f(z)dz = ijB f(2)dz + jyr f(2)dz.

For the first integral we have lim[ = f(2)dz = jy f (z)dz. The second

r—0 7/‘ AB
one can be decomposed in two integrals according to the form of f , namely

jyr f(2)dz = a_lfyr ZfZZO + jyr o(2)dz .
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Using the parameterization z=z, +r et te[B,a], of y,, weobtain

dz a. . .
=| idz=—-(f-a)i =—-(r-0)i.
I, —— I (B-a)i = —(z-0)
Because y, is a compact set, and function ¢ is continuous on y, , there

exists M = sup {|p(2)|: zey} < . In addition, the length of y, has the
formL = (B —a)r, hence the property of boundedness (X.1.7) gives

jy w(z)dz{ﬁ M (B-a)r — 0.
r r—0
If wetake r — 0 inal theintegrals from above, then we obtain

n
271 Y Rez(f,z) = jy f(2)dz —a 4 (r—-0)i,
k=1
where we haveto replace a_; = Rez (f, z)) .
In particular, if zy belongs to a smooth sub-arc of ¥, then thereis no jump

of the tangent, i.e. 6=0. &

Thevaluesof J, and L, from 2.13 are given in Problem 7 at the end.

In the final part of this section we will apply the residues theory to the
real integral calculus. The main difficulty rises from the curves on which
we integrate: the Residues Theorem holds on closed curves, while the red
integrals are defined on parts of R, which are non-closed curves. Therefore
we are interested in constructing closed curves by adding extra curves. The
problem isto control the integrals on these additional curves, which usually
means that we may neglect these integrals in alimiting process:

2.15. Jordan’s Lemma#l. Let D < C be adomain, on which the function

f: D—>C isderivable, and let z; € C be fixed. With vertex z, we consider

an angle of value « (radians), in which y, represents the arc of a circle of
radius r , centered at 7, . We suppose that y, < D holds for al r in a

neighborhood of 1y, where ry e R, defines a “limit position” of y, , (asin
Fig.X.1.4). Weclaim that if
lim max|(z—z)- f(2)| =0

r—-r, zey,
then we may neglect theintegral on y, , i.e.
lim f(z)dz=0.
r—r, I?’r (2

not.
Proof. Let us remark that M, = max|(z-z)- f(z)|, which appears in
zey,

the hypothesis, makes sense as a finite number, since y, is a compact set
and f is a continuous function. We recall that the length of y, isL, = ar .
According to Theorem X.1.7, we have
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A
Im z
D o
/
% fo
@) Rez -
Fig.X.2.4.
Using the hypothesis that
Ve >0 35(¢) >0 such that (r —rg| < 5(e) = M, <¢)
we obtain jy f(z)d# <ae. O

2.16. Example. Jordan’s Lemma#1 is useful in finding the integrals

o Ox
In_jo Loy neN,n>2.
As usudly, the first step is to identify the singular points. In this case,

function f(2) =1+ 2")™* hasn simple poles, namely

Z :exp{2k+1ni} , k=0,n-1.

Let I, =[O,Aluy, U[B,0O] beaclosed curvelikein Fig.X.2.5. If we take
r>1and a =2x/n=2arg z,, then z, will bethe only polein (I';). Using

A .
Im z B(z:re'“)
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the Residues Theorem, we obtain
jr f(2)dz=2riRez(f,2) _—%e’?
On the other hand, thisintegral equals a sum of integrals, namely
rodx
Irr f(z)dz= 101+x” + jyr f(2)dz + j[B,O] f(2)dz .
Following the definition of an improper integral, the first term gives

. rdx
Ilmj =1,

According to the above lemma, applied to f , a z,= 0, and ry =, we

may neglect the second integral, i.e. lim =0 implies
z>0]+72
nmj f(2)dz = 0.

r—oo
Finally, using the parameterization z= pei“, p e[r,0], we may reduce
the third integral to the first one:

— Al — _ala r dX
f(zdz=e jrl+pn ina Iol+xn

To conclude, the limit process r — « leadsto |, =7r/n sint .

2.17. Jordan’sLemma#2. Let D < C be adomain, for which
{zeC:lmz>Q <D,
and let the function f: D— C be derivable on D, except a finite number of

univalent isolated singular points. If lim f(z) =0, then
Z—>©

nmj 42 f(2)dz=0, Vu>0,

r—oo

where C, isthe upper half-C| rcle of radiusr, centered at O.
Proof. Using the parameterization z=r€'t, t [0, 7], we obtain

J‘[B,O]

not. . . .. . .
.= J‘q gnz f(Z)dZ — J‘(;T e|,ur(cost+|smt) f(l’ e't)l’ie'tdt.
If r is great enough to include al singularities under C, , then we may note

not.
M, = max{|f(2)|:ze C},sincef iscontinuous on the compact set C, .

The property of boundedness for integrals on intervals of R , gives
< rj'ﬂe_“rSint M, dt .
Because function sin is symmetric relative to , thisinequality becomes

| [<2rM Ee—ﬁ”smdt.
| <2rm, [
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Taking into account that sint > 2t at each t €[0,Z], we obtain
TM, -[1—6_’”]< TM,

H H
By hypothesis, r — o« implies M, — 0. &

I |<2rm, joz et =

2.18. Example. Let us show that the Heaviside' s function
0 ift<O

"(t):{l if t>0

allows an integral representation, expressed by the following formula
itz

€ 4z v5>0.
Z

n()—— Bois

To prove this equality, we first remark that the integral preservesits value
if wereplace R —id by A =(—ow0,—g]uUy, U[eg,+0). The definition of this

Im z A AImz
Y o
ot -¢ |O¢ Rez‘
R—is Tt
a) b)

Fig.X.2.6.

improper integral involveﬁthe curve A, =(-r,—e]luy, Ule,+r), since
itz itz

—I s J'Aez dz—Ilmf ez dz .

—o0
We construct the closed curve, which we need in the reﬁi dues theorem, in
different ways, depending on sign t (compare Fig.X.2.6 @) and b)).

Casea)t>0.Ifwenote Iy =A, Uy, ,then weobtain

itz

itz
Irﬁe dz=2;riRez[e ,O)=27ri.

r 2 Y4

Caseb) t<0. Theinterior of I,” = A, Uy, contains no singularity, hence
eitz
Iz

dz =0.

Using the Jordan’s Lemma #2, we neglect theintegralson y,” and y, .
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2.19. Classes of real integrals. To be calculable by residues, the real
integrals shall have certain particular forms. In practice we have to identify
the class the given integral belongs to, and to apply the specific technique.
A. Improper integralsof rational functions. Let us analyze the integral

—+00

| = J' M dx ,
Q(x)

where P and Q are polynomials with real coefficients. The existence of this
integral (see 8V.2) isassured if

e Q hasno real roots, and

o gradQ>gradP+2.
We suppose that these conditions are satisfied, and we pursue the technique
of calculating its value.

The starting point is the very definition of an improper integral, which (in

this case) allowstheform| = lim I, where
r—o0

+r
I, = dex :
7 Q(x)
To apply the Residues Theorem, we construct the closed curve
I =[-r+r]juy, ,
where y, isahalf-circle of radiusr, centered a O (asin Fig.X.2.7).

—0o0

Imz 4

Let z, 2, ... , Z; betheroots of Q , where grad Q = 2q, in the upper half-
plane {z < C:Ilmz > 0} . These points are poles of the complex function f , of

P2

values f(z2) = . If r isgreat enough, al these polesarein (I'; ), hence

q
Irf f(z)dz=2me_1Rez(f,zk),
where the right-hand member does not depend on r. What remains is to

decompose thisintegral on the sub-arcs [—-r,+r] and y,, andtotake r — o,
since the Jordan’s Lemma#1 operateson y, .
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B. Integralsof rational functionsin sin and cos. Let us evaluate

2r
J= I@’/ﬁ(sint,cost)dt,
0
where X isa(real) rationa function. Based on the Euler’srelations
it _ it eit 4 ot
sint=——— , cost=———,
2 2

we may change the variable t— z=¢'t, t €[0,27] . Because this change of
variables represents a parameterization of the unit circle, we obtain
I P(2) dz.
c(0) Q(2)
where P and Q are polynomials with real coefficients. The value of J comes
out by the Residues Theorem for the polesin the interior part of C (0, 1).

C. Improper Integrals of a rational function times cos (or times sin).
Let us consider integrals of the form

+00 +00
K¢ = IR(X)-cosuxdx, Ks = IR(X)-SiI’LuXdX,

where R = P/Q is arational function for which grad P <grad Q, and x> 0.
In addition we suppose that Q has no roots in R, and R is an even function
in K¢, respectively odd in Ks. In practice, if K.isgiven, possibly on [0, «),
then K= 0 because of parity, and vice versa. Therefore we may combine
K.and Ksin acomplex integral of the form
: def .
K=[ e R(x)dx = lim je'“XR(x)dx
R r—oo *
To obtain a closed curve, we construct I', = [ r,rjucC,, where C, isthe

upper half-circle of radiusr, centered at O (asin Lemma 2.17). Let us note
by 1, 2, ... , Z; theroots of Q in the upper half-plane (compare to class A).
These points are poles of the integrated function, which are contained in the

interior of I', whenever r > max { |z|: k :]71} Theorem 2.12 gives

j e'#?R(2)dz = 2ri ZRez(e'“ZR(z) ),
k=1
where the right-hand termisindependent of r. If we decompose

r
iuz — i i X iuz
Irr e "“R(z)dz = J'e R(x)dx + IC, e "“R(z)dz,
—r
then thelimit r — « avoidsthe integra (see Lemma#2), and we obtain

g .
K=2ri) Rez(e'"’R(2),z).
k=1
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The reader may find examples of such integrals at the end of the section.
There are many other types of integrals (e.g. with multi-vaued functions),
for which we recommend a larger bibliography. To be more convincing
about the advantages of using the Cauchy theory, we conclude by several
remarkable real integrals, which are easily obtained by residues techniques.
2.20. Remarkableintegrals. (a) The Poisson’sintegral is defined by

js'—ntdt

Using the parity of (sint) /t, and changl ng the variable, we obtain

PP()j

smut __J' Sln'Utdt

According to the Euler’s formula for sin, the problem reduces to the
Heaviside' sintegral, and theresultisP =7/ 2.
(b) Thereisaremarkablei ntegral of classCin 2.19, namely

,a>0,

L = J' COSt

which is known as Laplace's mtegral. Combining with the corresponding
integral of sin, we obtain
it
L=1 [ 5t
ZR t“+a

Because ia isthe only (simple) pole in the upper haf-plane, the study of

the above mentioned class C leads to the value
iz

2 1

-

L = miRez( 2e o) :Zle

a

(¢) Knowing the Gauss' integral G = J'e‘tzdt = % , We can evaluate

F= Icoszxdx = J'sinzxdle T
5 5 2\ 2

which are called Fresnel’s integrals. In fact, if I, isthe contour from 2.16,
for a = 7/ 4, then I el dz =0. Integrating by parts in the corresponding
real integral, it follows (without Lemmas #1 or #2) that _[ eZdz - 0.

r—oo
The integral on [O, A] tends to G, and a change of vari ables in the integral
on [B, O] leadsto G too.
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PROBLEMS 8X.2.

1. Write Laurent series for the following functions in the specified crowns:
1

(1) (23 ~372%+ 22)_1, £t 1

,0) .
Hint. (1) Compareto 2.4. (2) M uItl pIy the series of exp by a geometn c one.

(3) Decompose si n(1+ zil) , then write the series of sin and cos.

2. Develop the following functions in Laurent series around oo

2 99
0 St ) g i) s
Hint. ()1—2‘22 1+(31/Z) (ii) %-m;(m) Transform the series of

sin"1z around O.

3. Find the residues of the following functions at the specified points:

z-1 .\ . %
(a)Rez(23_222+2_2,|), (b)Rez(sm 2,0); (c)Rez( , 0);

(d) Rez (siné '1): (e)Rez (siné, 0); (f)Rez (exp(]/(z—l)),oo);

1 sin®z cos2/z
Rez sm—, . (h) Rez 1) Rez ,0).
(9) Rez ( o); (h) Rez ( 5 ,0); (i) ( shﬁ )
Hint. Directly use 2.6, 2.7 in (a) and (b). (c) Prolong SN2 46 a derivable

function. For (d) and (e), use the definition of sin. (f) In the series of exp,
each term is the sum of a series; identify the coefficient of 1/z. (g) Similarly
to (f), usethe series of sin and identify the coefficient of 1/zin

sin % :sin(£+i+i+ j
1 |

1 2}
() Use the development 250522 = 2 2.1 4, iy Divide the
7° 22 3z 45

series of cos2+/z by that of 1—cosh+/z .

4. Study whether the residues always vanish at regular points. Establish the
nature of oo, and (if any) find the corresponding residue of the functions:

(a2 +bz+c)L; Uz; e sinz; e sn(U2); vz
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Hint. According to Remark 2.5, Rez ( f, z) = 0 whenever z,, is a regular
point at finite distance. Otherwise, Rez ( f, ) is not necessarily null, e.g.

Rez (1/z, ©)= —1.Rez (sinz, «) and Rez (/z , %) make no sense,

5. Use the Residues Theorem to eval uate the complex integrals:

1
dZ . eE - 5 %Z . 0 1
J‘C(O,4) ZZSin 7 ’ J.C(O,%) (l— 2)2 dZ, jC(O,l) zmer dZ, IC(O,]_) zZ COShE dz.

Hint. Find the poles and the essential singularities in the interior part of the
mentioned circles, and evaluate the corresponding residues.

6. Let f: D— C be aderivable function, which has only a finite number of
univalent isolated singular points, say z , %, ..., Z,. Show that

n
Rez (f, )+ Y Rez(f,z) =0.
k=1
dz

C(z.r) 210_1
Hint. If R>max {|z]:k=1n},thenC(O,R) cD=C\{z, 2, ..., Z4}, S0
the Residues Theorem gives

Use this fact to evaluate | = j

, where z; =—-0.001, and r = 1.

n
f(z)dz=2ri > Rez(f,z).
k=1
Compare to the definition of the residue at o, which shows that

ZﬂiRez(f,oo):j f(z2)dz .

j C(O,R)

C (O,R)

-1
Function f(2) = (210 —1) , from |, has ten ssimple poles, namely the roots

of order 10 of 1, z, :cos%ﬂsinzlk—g, k=0, 9. Except z,= 1, the other

nine polesliein theinterior of C(—0.001, 1). Instead of evaluating the nine
residues at these poles, it iseasier towritel =Rez (f, ©) +Rez (f, 1) .

7. Evaluate theintegrals J, and L, from Example 2.13, VheN .
Hint. Thecircles y,,=C(0,n+1) from J, are smooth curves, hence we use

2.14 with 6 = 0. The curves 4, in L, are squares, hence we take 0 = 7 /2.
The calculus indicated by Theorems 2.12 and 2.14 leads to the values

rile-2ve) if n=0 ri(3e-2ve) if n=0
Jn=1-wie if n=1 and L, ={-3zie if n=1
0 if n>2 0 if n>2,
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8. Evaluate the improper integrals

© 2 +0o0
X“+1 dx
| = dx; J= | —5——5—=,a>0.
J(;x4+l _'[o(x2 +a2)2
Hint. Use the method described in 2.19 A. To find | = 7/+/2, evauate the
residues at the ssmple poles % . In the upper haf-plane, the function

from J has adouble pole at ai.

9. Find the values of the following real integrals by means of residues:

I 4 do
I = I » J= I 2"
2 ~/2+cos2t o 1-2acosé +a
Hint. Apply the scheme from 2.19 B. For I, the only (smple) pole in the

unit circleis1 — /2. For J, the corresponding poleisa.

ac (0.

10. Evaluate the integrals

T cosx T xsinax
| = |———dx; J=|——=50dX, a,beR.
(Ij(x2+1)2 o X2 +b?
Hint. The integrals belong to class 2.19 C. In the case of | there is a double
poleat i. J vanishes for a = 0, and it J reduces to the Poisson’s integral for

b = 0, hence we may restrict the problemto a, b > 0.
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- nabla121 - of avector field 49, 113
orientated
- border 114 S
- curves 35, 158 Schwartz 98
- surfaces 105 section 68
series

P - reduction to 17
parall el epiped 56 smooth
paralleloid 56 - curve 33
parameterization - piece-wise 33
- complex 155 - surface 91
- equivaent 34, 92 Stokes 114
- of acurve 33 sum
- of asurface 91 - line integral 40, 44
part - multiple integral 63
- interior / exterior 106 - surface integral 95, 99, 107
- positive / negative 85
- regular / principal 170 T
- vector 120 tangent bundle 120
point tangent plane
- angular 177 - to asurface 92
- critical 37 tangent space 119
- intermediate 39 tangent vector
- singular 172 -toacurve 33, 130
Poisson 31, 184 - to the space 120
pole 172 total differential 47
potentia triple integral 64
- scalar 47
- vector 145 \
Principal value 18, 87 variation
projection 68 - bounded 33
p-volume 56

W

R Welerstrass 165
rectifiable curve 33
regular
- surface 91
- domain 112
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[AT]
[A-M]

[BN]
[BN]

[B-J]
[B-S-T]
[BT4]
[BT]
[BT3]
[BT4]
[CG]
[CH]
[CI]
[C-]
[CR]
[C-T]
[CV]
[DB]

[DE]
[DJ]

[FG]

[G-O]
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