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   This note aims to convince the reader of the book Complements
 *)

 about 

the undeniable presence of super-additivity in plenty of natural situations. 

Therefore, we will list three types of super-additive norms and metrics:  

A. In mathematics; 

B. In physics;  

C. In everyday experiences.   

   To talk without formulas, the reader may directly refer to part C.  

 

   The usual rule of a triangle, saying that the shortest route between two 

points is the straight line, is one of the most frequently accepted statements, 

in both theory and practice. In terms of distances, this rule takes the form  

d(A, B)   d(A, C) + d(C, B),                          (s.a.) 

where d(A, B) means distance between the points A and B etc. By extension 

to a metric d : X x X   R+ , where X is an arbitrary non-void set and R+ is 

the set of positive real numbers, this condition represents the sub-additivity 

(briefly s.a.) of d.  

   By super-additivity (briefly S.a.) of function d we understand the opposite 

inequality, namely  

d(A, B)   d(A, C) + d(C, B).                          (S.a.) 

Because S.a. strongly contradicts our experience with distances as well as 

our standard educational training, it is important for us to identify as many 

as possible examples of S.a. functions. This means to find particular sets X 

and appropriate meanings for the values of d, which may help us to accept 

that S.a. is a natural phenomenon too.  

   Differently from distances (and generally s.a. metrics), condition (S.a.) is 

not possible for each side of a triangle, so we must restrain S.a. metrics to 

subsets R  X x X , usually preorders on X. Most frequently, we take  

R = K
 =

 = K  д ,  

where K is a strict order and д is the equality on X. Function d : R  R+ is a 

S.a. metric on X if inequality (S.a.) holds at all (A, C), (C, B)R .  

   In real linear spaces, we may derive S.a. metrics from S.a. norms, which 

are functions of the form ||   : R[0]   R+ , where preorder R is compatible 

with linearity of X. As usually, d(A, B) = ||  AB  at each (A, B)R..  
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   A. S.a. norms and metrics in Mathematics. We claim that generally, 

each s.a. metric has a S.a companion.  

Example A1. For the first time
*)

, I met S.a. norms and metrics in the 

algebra H = R2
 of hyperbolic numbers. Each zH has the form x + jy, 

where the main property of j = (0, 1) is j
2
 = +1. Like the complex ones, the 

hyperbolic number z = x + jy has the conjugate z  = x – jy, but function ||  , 

restrained to H1 = { z = x + jy H : x > | y |}, of values   

22|| yxzzz  ,  

is a S.a. norm.  

   Obviously, ||   is the S.a. companion of the Euclidean norm   of the 

complex plane C. 

Example A2. Let (S, d) be a metric space and let X = R x S be the world of 

events that possibly happen in S. Relation  

K = {((t, x), (s, y))X
 2

 : s – t > d(x, y)} 

is a strict order on X, and function  : K
=
  R+ , of values  

((t, x), (s, y)) = ),()( 22 yxdts  , 

is a S.a. metric. In particular, d may derive from a norm, like in the case of 

the Euclidean S = R n
, nN*.  

   If S = R, then functions k||  : K
=
 [(0, 0)]  R+ , k = 1, 2, 3, of values  

1|),(|  yx = 22 yx  ,  

2|),(|  yx = x and  

3|),(|  yx = x –  | y | ,  

are remarkable examples of S.a. norms.  

Example A3. If  = {(x, y), (u, v)) : x   u & y   v} be the product order in 

X = R2
, then function “area”, i.e. A  :   R+ , of values  

A ((x, y), (u, v)) = (u – x) (v – y), 

is super-additive. In addition, ||  = A  is a S.a. norm.  

   Other S.a. norms k||  : [(0, 0)]  R+ , k = 1, 2, have the values 

1|),(|  yx = min {x, y}, respectively  

2|),(|  yx = ( x  + y )
2 

.  

   These examples allow easy extensions to arbitrary Cartesian products of 

S.a. metric spaces.  
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Example A4. Let (X, ( . | . )) be an indefinite inner product space over R or 

C.. If (x | x) > 0 and (y | y) > 0, but Lin{x | y} is an indefinite linear subspace 

of X, then the fundamental inequality, namely  

| (x | y) |
 2

 > (x | x) (y | y)                              (Aczél) 

is opposite to the Cauchy-Bunjakowski-Schwartz inequality. Consequently, 

the indefinite inner products generate S.a. norms on subspaces of X, which 

resemble a Pontrjagin space.  

Example A5. If T is an arbitrary non-void set, we note by X = FR(T) the set 

of all functions f : T  R. Relation  

R = {(f, g)X
 2

 :   inf{g(t) – f(t) : tT} > 0} д 

is a strict order on X and function ||   : R[0]  R+ , of values 

||  f  = inf{ f(t) : tT} 

is a S.a. norm on X. Obviously, ||   is a S.a. peer of the sup type norm.  

Example A6. Let (M, A , ) be a measure space, and X = 
p
RL (M) be the 

space of all measurable functions on M, for which 
p

f . If p[0, 1) 

and R is the usual order on X, i.e.  

R = {(f, g): f(x)   g(x),  x[a, b]},  

then function ∤  ∤ : R [0]  R+ , of values ∤ f ∤ =   pp
f /1

  is a S.a. norm 

on X. In fact, this is a consequence of the inequality  

 fg   pp
f /1

   qq
f /1

 ,                     (Hölder) 

which holds for 0 < p < 1 and p
 – 1

 + q
 – 1

 = 1.  

   Similar results hold for p < 0.  

   The framework of such S.a. norms allows an appropriate study of the 

duality of the 
p
RL  spaces in the case p < 1.  

Example A7. In the Boolean algebra of propositions, now noted X, we 

define the relation of implication AB by “B is true whenever A is true”. It 

is easy to see that   is an order in X and function d :   R+ , of values   

d(A, B) = card [A, B] – 1, 

where [A, B] = {PX : A  P B }, is a S.a. metric on X.  

    

   To produce new S.a. norms and metrics, we have a lot of possibilities:   

restrictions, prolongations, symmetric companions, polarity, quantization, 

etc. In addition, we may use S.a. normed and metric spaces to construct 

subspaces, over spaces, product and quotient spaces, and generally initial 

and final structures.  

   Obviously, several S.a. norms and metrics from above are isomorphic.  
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   B. S.a. norms and metrics in Physics. The presence of S.a. norms and 

metrics is a common feature of the Relativist and Quantum Physics.  

Example B1. (Proper time) Operating with events, i.e. pairs time – space, 

instead of material points, is a far-famed idea of the Einsteinian Relativity. 

Represented in a system of coordinates, the events have the form  

e = (t; x, y, z)R x R3
 = E ,  

in which t is the moment and (x, y, z) is the place where e holds. Frequently, 

the events signify emissions or receptions of signals, as well as the simple 

fact that an observer has the position (x, y, z) at the moment t.  

   The fundamental principle of Relativity states that the speed of light  

c = 299 792 456 m/s 

is a universal constant and the relative speed v between any two particles, 

observers etc. obey the inequality | v | < c. Consequently, the quadratic form  

Q(e) = c
2
 t

2
 – (x

2
 + y

2
 + z

2
) ,  

which is positive at time-like events, leads to the strict order  

K = {(e1, e2)E
2
 :  Q(e1 –  e2) > 0 & t1 <  t2}, 

usually called causality. Condition (e1, e2)K means that e2 is accessible to 

an inertial observer that previously lived the event e1.   

   Function 
t

 : K[0]  R+ , of values 
t

e  = )(eQ , is a S.a. norm, called 

temporal norm. The meaning of the number 
t

e  is proper time, i.e. time 

measured by an inertial observer that is moving between the events 0 and e.  

   The super-additivity of the proper time was initially qualified as a paradox 

(see twins story, clocks paradox etc.), but finally it was verified in practice. 

Perhaps scientists wouldn’t have used term paradox if they had known more 

cases of S.a. norms and metrics.  

Example B2. (Quantized norms and metrics) In Quantum Physics, there 

exist lower bounds for the values of the physical quantities, called quanta. 

The former (~ 1900), quanta of action, discovered by Max Planck, is  

                                h = 6.6 x 10
 – 34

 secjoule .                        (Planck) 

In particular, the shortest measurable length, called Planck length, is  

3c

G
P


  , 

where  = h / 2 and G is the gravitational constant.  

   Quantum Physics reveals a lot of phenomena inexplicable by the classical 

theories. For example, the quantization of a measurement rejects the usual 

norms and metrics, since the existence of a lower bound contradicts sub-

additivity. On the other hand, all S.a. norms and metrics naturally support 

the process of quantization. Thus, if ||   : R [0]  R+ is a S.a. norm in the 
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linear space X, ordered by R, then for arbitrary (generic)  >0, the quantized  

function ||  : R [0]  R+ , of values  















||||

||0
||

xifx

xif
x  

is a S.a. (semi-) norm too.  

   Similarly, we may replace R by  

R = {(x, y)R :  || xy } д , 

to obtain a threshold   of the restriction 
R||  .  

Example B3. (Heisenberg’s uncertainty principle) Besides the individual 

quantization of the physical quantities, the measurement of each parameter 

of a particle perturbs the values of the other parameters. Consequently, the 

measurements at quantum scale obey the so called principle of uncertainty. 

In the particular case of x = position and p = impulse, this principle gives  

| x | | p | >  ,                             (Heisenberg) 

where x and p represent the errors of measurement of x and p.  

   Alternatively, the errors of measurement of x and p involve the S.a. norm  












,||||||||

||||0
||)||,(||






pxifpx

pxif
px  

which is a quantization of the S.a. norm ||   from Example A3.  

 

   C. Super-additivity in everyday experiences. It’s amazing to realize in 

how many situations and how easy we neglect recognizing super-additivity. 

Again, the opposition to “the shortest route on a straight line” may explain 

this habitude.  

Example C1. (Synergy) It is easy to see that the power (value, efficiency 

etc.) of a group of persons (or other living beings) is greater than the sum of 

powers of the members. This is the reason why people live in groups, parties 

and societies, animals make herds etc. 

Example C2. (Proofs) At any level, we may immediately remark that 

Mathematics (and any other science) consists of sentences of the form  

“If H = hypothesis, then C = conclusion”,                      (P) 

meaning Propositions, Theorems, Problems etc. Understanding (accepting, 

agreeing with) such assertions usually encounters some difficulty. Therefore, 

to convince that (P) is true, we have to give proofs, which insert at least one 

intermediate fact, say I, between H and C. The profit of the proof is that the 

sum of difficulties of the assertions “If H, then I“ and “If I, then C“ is less 

than the initial difficulty of justifying (P).  

   To conclude, the difficulty of a logical implication is super-additive.  
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Example C3. (Arts) Like in sciences, we may recognize super-additivity in 

arts too. Each artist aims to communicate ideas, feelings, advices etc. His 

piece of art (novel, song, painting etc.) represents the intermediate factor at 

hand that may reduce the people’s difficulty to perceive and accept him.    

Example C4. (Using tools) In practice, we often need additional devices to 

perform an operation. To paraphrase a famous story, let us suppose we see 

an apple in the tree, but it doesn’t fall itself. To reduce the difficulty of 

getting the fruit, we may look for a pole (stone etc.), then use it to shake 

down the apple.  

   Examples like the Trojan horse are very frequent in history.  

Example C5. (Getting help) To perform hard works we often ask for help. 

In this round-about way we save energy and time.  

   Unfortunately, the help is sometimes done illegally or unfairly (by tricks, 

traitors etc.).   

Example C6. (Games) It is widely accepted that many activities in our life 

represent games. Aiming to win, each player follows some strategy and tries 

to find the easiest way that leads to victory.   

Example C7. (Intelligence) To survive, each creature has to do something, 

which makes supportable its existence. Hereditarily, it acquires some ways 

of behavior, but new schemes may result by experience. In the last case, we 

speak of intelligence, i.e. a capacity of the beings to diminish the difficulties 

of their existence. This process involves the super-additivity of the amount 

of difficulties realized by intermediate actions. Most frequently, we may 

highlight super-additivity it in terms of time.  

 

   Thus, we may conclude that super-additivity is present in plenty of 

situations. In fact, even if at the beginning I was wandering where to see 

super-additive phenomena, now I am asking myself about their universality. 

According to the last Chapter of the book Complements, super-additivity is 

a sign of structural discreteness. Encouraged by the general duality between 

continuity and discreteness, we may assume that sub- and super-additive 

phenomena equally happen overall in the world.  

 

 
Craiova, March 21, 2017   

 


