DISCIPLINE ACADEMIC SHEET

ACADEMIC YEAR 2019 - 2020

1. PROGRAMME DATA

1.1 Higher Education Institution	UNIVERSITY OF CRAIOVA
1.2 School	Automation, Computers and Electronics
1.3 Department	Computers and Information Technology
1.4 Field of Study	Computers and Information Technology
1.5 Study Level ¹	L (licence/ undergraduate)
1.6 Study Program (name/code) ² /Calification	Computers / L206010101010

2. DISCIPLINE DATA

2.1 Discipline	e Nam	e		Special Chapters in Mathematics					
2.2 Course Activities Holder				Associate Professor Cristian VLADIMIRESCU					
2.3 Practical	Activi	ties Holder		PhD Student Andrei GRECU					
2.4 Study	Ι	2.5 Semester	Ι	2.6 Discipline Type	DF	2.7 Discipline	DI	2.8Evaluati	Е
Year				(content) ³ Conditions on Type		on Type			
						(mandatory) ⁴			

3. ESTIMATED TOTAL TIME (hours per semester of teaching activities)

3.1 Number of hours per week	5 in which: 3.2 3 3.3 seminar/laborator		3.3 seminar/laboratory/project	2		
3.4 Total hours of curriculum	70	in which: 3.5	42	3.6 seminar/laboratory/project	28	
3.7 Time distribution	1	course	1	1	hours	
 Study after manual, course support, bibliography and notes 					20	
 Additional documentation in library, on specialized electronic platforms and field 					10	
 Training seminars / labs, homework, portfolios and essays 					20	
 Tutoring 				-		
 Examinations 				8		
 Other activities: consultations, student meetings 					2	
Total hours per individual 60						

Total hours per individual activities	60
3.8 Total hours per semester ⁵	130
3.9 Number of credits ⁶	5

4. PRECONDITIONS (where appropiate)

4.1 of curriculum	The students should have mathematical notions learned during the college and the first semester.
4.2 of competence	There are not necessary.

5. CONDITION (where appropriate)

5.1. of the course	The teaching is explanatory and interactive at the blackboard. One ensures			
	electronic course support and acces to updated documentation. The teaching			
	process has the following structure:			
	 70% theoretical presentation, based on the couse support; 			
	 30% interactive activity with the students. 			
5.2. of seminar/ laboratory/project	The seminar is developed interactively with the sudents, by ensuring also electronic			
	support.			

6. SPECIFIC LEARNED SKILLS 7

	Through the notions introduced at the course, the examples and the applications from the seminar, the Special						
lce	Chpaters in Mathematics course contributes to the following:						
ten	- professional competences:						
lpe	• Proper use in professional communication of the eigen concepts of calculability, complexity,						
Om	programming paradigms and modelling of computer and communications systems.						
<u>ی</u>	 Theoretical foundation of the features for the designed systems. 						
na	 Identification of a class of problems and solving methods specific for computer systems. 						
sio	 Using interdisciplinary knowledge, solution patterns and tools to conduct experiments and interpret their 						
fes	results.						
ro	 Applying solution by means of engineering tools and methods. 						

7. DISCIPLINE OBJECTIVES (based on the specific learned competences)

7.1 General	• Fundamental discipline, necessary to each special approach. One presents the fundamental
objective of the	notions of complex analysis, ODE, Fourier analysis, Laplace, Z, and Fourier transforms.
discipline	 Teaching the students to be able to solve certain ODEs of first or higher order, systems of first
	order ODEs, Cauchy problems, to expand in Fourier series different types of functions, to determine
	the integral transforms of elementary (or not) functions, to determine various sequences that are
	defined reccursively apply differential and integral calculus to solving practical problems, to solve
	elementary PDES, to calculate the probabilities of different events, to determine the expectation, the
	variance, the moments of discrete and continuous random variables (r.v.), to find the marginal
	distributions to discrete or continous random vectors, to establish the independence of certain r.v, to
	find the covariance and the correlations of two r.v, to determine the regression line, to apply the central
	limit theorem to practical statistical problems.
	• The aim of the seminar is to fix the theoretical knowledges and to create calculus abilities
	through practical applications, exercises, and problems.
7.2 Specific	The achivement of some necessary abilities, as: complex analysis; ordinary differential equations and
objectives	systems of ordinary differential equations; Fourier series; Laplace transform; Z transform; Fourier
	transform; elementary partial differential equations; probabilities; statistics.

8. CONTENT

8.1 COURSE (content units)	No hours	Teaching methods
1. Complex Analysis	6	Exposition
1.1. Complex numbers. Algebraic properties. The Euclidean distance, the		
modulus, the conjugate. Inequalities. Geometric representation.		The teaching is
1.2. Sequences of complex numbers. Complex functions of ca complex variable.		explanatory and
Continuity, differentiability, Cauchy-Riemann equations, holomorphic		interactive at the
functions.		blackboard. One ensures
1.3. Power series with complex coefficients, convergence, fundamentaal		electronic course support
theorems of Abel, Cauchy-Hadamard, differentiability, expansion in Taylor		and acces to updated
series.		documentation. The
1.4. Elementary functions defined as power series. The exponential, sin, cos,		teaching process has the
argument, logarithm, the power function, the root function. Solving simple		following structure:
equations.		- 70% theoretical
1.5. Paths in the complex plane. The integral of a complex function: definition,		presentation, based on
properties. Cauchy's Theorem for holomorphic functions. Leibniz- Newton		the couse support.
formula. Holomorphic and analytical functions.		- 30% interactive
1.6. The zeros of a holomorphic functions. Singularities: classification		activity with the
(removable, pole, essential).		students.
1.7. Laurent series. The convergence annulus. The theorem of existence and		
uniqueness. Expansion in Laurent series.		
1.8. The residues of a holomorphic functions at a singularity. The residue		
theorem. Application to the calculus of certain real improper integrals.		
2. Ordinary Differential Equations	3	
2.1. ODEs, initial conditions, Cauchy problem		
2.2. Solving first order ODEs through elementary methods: separable ODEs,		
homogenous ODEs, linear ODEs, Bernoulli, Riccati, Clairaut, Lagrange ODEs.		
2.3. ODEs of highe order with constant coefficients. Euler ODEs.		
2.4. Systems of linear first order ODEs with constant coefficients.		
3. Fourier Analysis – Fourier series		
3.1. Periodic signals. Odd, even functions, extensión through periodicity,	3	
oddeness, odd extensions, even extensions.		
3.3. Fourier coefficients, the Fourier series associated to a function.		
3.4. Parseval's formula. Bessel's inequality.		
3.6. Expansions in Fourier series of sines, cosines. The calculus of certain		
numerical series by using Fourier series.		
4. Laplace and Z transforms	6	
4.1. Improper integrals. Euler's Beta and Gama functions.		
4.2. Original signals. Laplace transform: definition, properties, fundamental		
I Contraction of the second	1	

 theorems. 4.4. Laplace transforms of elementary functions. 4.5. Calculus of various Laplace transforms, finding the original, applications to ODEs and integral equations. 4.6. Elementary discrete signals. Z transform (discrete Laplace transform). 4.7. Finding of the general term of discrete signals that are defined by linear recourse. 					
 5. Fourier transform 5.1. Integrable signals. Fourier transform. Inversion of the Laplace transform, Mellin- Fourier Theorem. 5.2. Fourier transforms through sine and cosine 5.3. Solving certain integral equations, representation of certain functions as Fourier integrals. 	3				
6. Probability Theory and Statistics	2				
6.1. Basics of Probability Theory. Events and probabilities. Independence and conditional probabilities. Total probability formula. Bases's formula.	3				
6.2. Discrete random variables . Expectation, variance, standard deviation, moments. Bernoulli distribution, binomial distribution, uniform distribution geometric distribution, Poisson distribution, Zipf distribution. Discrete random vectors Marginal distributions	4.5				
6.3. Continuous random variables. Cumulative distribution function, probability density function, expectation, variance, standard deviation, moments. Examples relevant for CS. Random continuous vectors. Marginal densities. Probability distribution. Uniform distribution, exponential distribution parallelistic function.	4.5				
6.4. Discrete Markov chains . Equilibrium distribution. Simulation. PageRank	3				
– Google algorithm					
7. Elements of statistics. The central limit theorem. Estimators of parameters.	6				
Total	42				
Bibliography ⁸					
1. C. Avramescu, C. Vladimirescu, Ecuații diferențiale și integrale pentru infor	maticieni, T	ipografia Universității din			
Craiova, 2003.		2002			
2. C. Avramescu, C. Vladimirescu, Curs de Calcul Științific, Reprografia Univesității din Craiova, 2002.					
5. 1. Datati, Capitole de matematici Speciale, 1998. 5. G. Denascu, Matematici Speciale (curs în format electronic)					
6 E. Petrisor. Modele probabiliste si statistice în stiinta și ingineria calculatoarelor. Editura Politebnica. Timisoara, 2008					
7. C. Vladimirescu, Matematici Speciale (curs în format electronic).	., Danulu I U	incimica, i mingoara, 2000.			
8.2 Practical activities (topics/homework)	No hours	Teaching methods			
1. Complex Analysis	4	Solving practical			

0.2 Tractical activities (topics/nomework)	NO HOUIS	reaching methods
1. Complex Analysis	4	Solving practical
1.1. Complex numbers. Algebraic properties. The Euclidean distance, the		applications
modulus, the conjugate. Inequalities. Geometric representation.		The seminar is developed
1.2. Sequences of complex numbers. Complex functions of ca complex variable.		interactively with the
Continuity, differentiability, Cauchy-Riemann equations, holomorphic		sudents, by ensuring also
functions.		electronic support.
1.3. Power series with complex coefficients, convergence, fundamentaal		
theorems of Abel, Cauchy-Hadamard, differentiability, expansion in Taylor		
series.		
1.4. Elementary functions defined as power series. The exponential, sin, cos,		
argument, logarithm, the power function, the root function. Solving simple		
equations.		
1.5. Paths in the complex plane. The integral of a complex function: definition,		
properties. Cauchy's Theorem for holomorphic functions. Leibniz- Newton		
formula. Holomorphic and analytical functions.		
1.6. The zeros of a holomorphic functions. Singularities: classification		
(removable, pole, essential).		
1.7. Laurent series. The convergence annulus. The theorem of existence and		
uniqueness. Expansion in Laurent series.		
1.8. The residues of a holomorphic functions at a singularity. The residue		
theorem. Application to the calculus of certain real improper integrals.	ļ	
	1	1

	•	1
2. Ordinary Differential Equations	2	
2.1. ODEs, initial conditions, Cauchy problem		
2.2. Solving first order ODEs through elementary methods: separable ODEs,		
homogenous ODEs, linear ODEs, Bernoulli, Riccati, Clairaut, Lagrange ODEs.		
2.3. ODEs of highe order with constant coefficients. Euler ODEs.		
2.4. Systems of linear first order ODEs with constant coefficients.		
3. Fourier Analysis – Fourier series	2	
3.1. Periodic signals. Odd, even functions, extensión through periodicity,		
oddeness, odd extensions, even extensions.		
3.3. Fourier coefficients, the Fourier series associated to a function.		
3.4. Parseval's formula, Bessel's inequality.		
3.6 Expansions in Fourier series of sines, cosines. The calculus of certain		
numerical series by using Fourier series		
A Lanlage and 7 transforms	4	
7. Laplace ally L it allowing	-+	
4.1. Improper integrals. Euler's beta and Gama functions.		
4.2. Original signals. Laplace transform: definition, properties, fundamental		
theorems.		
4.4. Laplace transforms of elementary functions		
4.5. Calculus of various Laplace transforms, finding the original, applications to		
ODEs and integral equations.		
4.6. Elementary discrete signals. Z transform (discrete Laplace transform).		
4.7. Finding of the general term of discrete signals that are defined by linear		
reccurence.		
5. Fourier transform	2	
5.1. Integrable signals. Fourier transform. Inversion of the Laplace transform.		
Mellin- Fourier Theorem.		
5.2 Fourier transforms through sine and cosine		
5.3. Solving certain integral equations representation of certain functions as		
Fourier integrals		
rourier megruis.		
6 Probability Theory and Statistics		
6.1 Basics of Probability Theory Events and probabilities. Independence and	2	
conditional probabilities. Total probability formula, Bayes's formula	2	
6.2 Discrete render variables. Execute in variance standard deviation	3	
0.2. Discrete random variables. Expectation, variance, standard deviation,	3	
moments. Bernoulli distribution, binomial distribution, uniform distribution		
geometric distribution, Poisson distribution, Zipf distribution. Discrete random		
vectors. Marginal distributions.	-	
6.3. Continuous random variables. Cumulative distribution function,	3	
probability density function, expectation, variance, standard deviation,		
moments. Examples relevant for CS. Random continuous vectors. Marginal		
densities. Probability distribution. Uniform distribution, exponential		
distribution, normal distribution. Independence. Covariance. Correlation.		
6.4. Discrete Markov chains. Equilibrium distribution. Simulation. PageRank	2	
– Google algorithm		
7. Elements of statistics. The central limit theorem Estimators of parameters	4	
Linear regression Logistical regression	•	
Liter repression Dobistion repression.		
Total	28	1
Dillis menha 8		

Bibliography 8

1. C. Avramescu, C. Vladimirescu, Ecuații diferențiale și integrale pentru informaticieni, Tipografia Universității din Craiova, 2003.

2. C. Avramescu, C. Vladimirescu, Curs de Calcul Științific, Reprografia Univesității din Craiova, 2002.

3. T. Bălan, Capitole de matematici speciale, 1998.

5. G. Popescu, Matematici Speciale (curs în format electronic).

6. E. Petrişor, Modele probabiliste şi statistice în ştiința şi ingineria calculatoarelor, Editura Politehnica, Timişoara, 2008.7. C. Vladimirescu, Matematici Speciale (curs în format electronic).

9. COURSE CONTENT CONJUNCTION WITH EXPECTATIONS OF THE EPISTEMIC COMMUNITY REPRESENTATIVES, PROFESSIONAL ASSOCIATIONS AND EMPLOYEE REPRESENTATIVES IN THE PROGRAM DOMAIN

Development and and acquiring of notions, methods, and actual mathematical techniques, used to the mathematical modelling of engineering problems.

	mark weight
10.4 + 10.5 - The understanding the problem Evaluations: written test: 6 applicative subjects; each	100%
Course + - The mathematical statement subject is mandatory and is worth a score maximum	
Practical - The solving of the problem 1.5. The mark at the written test is the sum of the	
activities - The development degree of scores at the 6 subjects + 1 for free.	
practical abilities and capability	
to work with the notions, I he weight of the score from the written test in the	
introduces methods	
Fucluations of continuous accessments is made	5004
during the semester based on a written mid-semester	50%
test with 3 applicative subjects: each subject is	
mandatory and is worth a score maximum 3. The	
mark at the mid-semester test is the sum of the scores	
at the 3 subjects $+ 1$ for free.	
The weight of the score from the mid-semester test	
in the final score is: 50%.	
The minimum score to pass the mid-semester test is	
5.	
The students who have passed the mid semester test	50%
will have to solve at the final written test only 3	50%
subjects (from the existing 6) corresponding to the	
chapters that have not being assessed at the mid-	
semester test. The score is deduced similarly.	
The final score if deduced by using the formula:	
$Sfinal = 0.5 \times SFinalTest + 0.5 \times SMidTest,$	
where SFinalTest is the score (at least 5) obtained at	
the final written test; SMidTest is the score (at least	
5) obtained at the mid-semester test.	
The minimum final score to pass the exam is 5	
10.6 Minimum standard of performance (the minimum knowledge necessary to promote discipline and how t	to check the
knowledge acquiring)	
- Minimum standards to promote: the understanding of the notions and basic terminology.	
- The obtaining of a minimum 50% from the continuous assessments and the final exam.	
- The estimate of the final mark is made by rounding to integer mark of the final scores.	

Date of completion: 17.02.2020

Course Holder

Applicative activities holder

Assoc. Prof. Cristian VLADIMIRESCU, Ph. D. Ph. D. Student Andrei GRECU

(signature)

(signature)

.....

Date of approval:

10. EVALUATION

Head of Department Prof. Marius BREZOVAN, Ph. D. (signature)

.....

Note:

- Study level select one of the possible choices: L (licence or undergraduate)/ M (master)/ D (doctoral).
- 1) 2) 3) Choose the code as defined by HG nr. 493/17.07.2013.
- Type (content) select one of the possible choices:
- for the licence or undergraduate level: DF (fundamental discipline)/ DD (domain discipline)/ DS (specialty discipline)/ DC (complementary discipline);
- for the master level: DA (thoroughgoing study discipline)/ DS (synthesis discipline)/ DCA (advanced knowledge • discipline).
- Condition of discipline (compulsoriness) select one of the possible choices: DI (compulsory discipline)/ DO 4) (optional discipline)/ FC (facultative discipline).
- 5) Obtained by means of adding the number of hours from 3.4 and 3.7.
- A credit is equivalent with 25 30 hours of study (didactical activities and individual study). 6)
- 7) The aspect of professional and transversal competences will be considered according to the OMECTS Methodology no 5703/18.12.2011. Competences are those listed in RNCIS (http://www.rncis.ro/portal/page? pageid=117,70218& dad=portal& schema=PORTAL) for the field of study from 1.4 and the study program from 1.6 in which the discipline is enrolled, in this academic sheet.
- 8) At least one title is recommended to belong to the collective co-ordinating discipline, and at least 2-3 titles to refer relevant papers for the discipline from the national and international circuit, from the library of UCv.