DISCIPLINE ACADEMIC SHEET ACADEMIC YEAR 2020 - 2021

1. PROGRAMME DATA

1.1 Higher Education Institution	UNIVERSITY OF CRAIOVA
1.2 School	Automation, Computers and Electronics
1.3 Department	Computers and Information Technology
1.4 Field of Study	Computers and Information Technology
1.5 Study Level ¹	L (licence/ undergraduate)
1.6 Study Program (name/code) ² /Calification	Computers / L206010101010

2. DISCIPLINE DATA

2.1 Disciplin	e Nan	ne		Mathematical Analysis					
2.2 Course A	2.2 Course Activities Holder			Associate Professor Cristian VLADIMIRES					
2.3 Practical	2.3 Practical Activities Holder			Assistant Professor L	Assistant Professor Laurenţiu TEMEREANCĂ				
2.4 Study	I	2.5 Semester	I	2.6 Discipline Type	DF	2.7 Discipline	DI	2.8Evaluati	E
Year				(content) ³		Conditions		on Type	
						(mandatory) ⁴			

3. ESTIMATED TOTAL TIME (hours per semester of teaching activities)

3: ESTIMATED TOTAL TIME (nouns	per sen	nester or teaching acti	110100)		
3.1 Number of hours per week	5	in which: 3.2	3	3.3 seminar/laboratory/project	2
		couse			
3.4 Total hours of curriculum	70	in which: 3.5	42	3.6 seminar/laboratory/project	28
		course			
3.7 Time distribution					hours
 Study after manual, course support, bibliography and notes 				53	
 Additional documentation in library, on specialized electronic platforms and field 				14	
 Training seminars / labs, homework, portfolios and essays 			14		
■ Tutoring			-		
Examinations			2		
 Other activities: consultations, student meetings 				2	

Total hours per individual activities	85
3.8 Total hours per semester ⁵	125
3.9 Number of credits ⁶	5

4. PRECONDITIONS (where appropriate)

4.1 of curriculum	The students should have mathematical notions learned during the college.
4.2 of competence	There are not necessary.

5. CONDITION (where appropriate)

3. CONDITION (where appro	(State)		
5.1. of the course	The course is taught explanatory and interactive on-line, both on the Google Meet		
	platform, in audio-video conferencing system, and on the Google Classroom		
	platform. Course support is provided in electronic format on the Evidenţa		
	Studenţilor and Google Classroom platforms, and access to updated documentation		
	is ensured. The teaching process has the following structure:		
	 80% theoretical presentation, based on the couse support; 		
	 20% interactive activity with the students. 		
5.2. of seminar	The seminar is taught interactively on-line with students both on the Google Meet		
	platform, in audio-video conferencing system, and on the Google Classroom		
	platform. Seminar support is provided in electronic format on the Evidenţa		
	Studenţilor and Google Classroom platforms.		

6. SPECIFIC LEARNED SKILLS 7

Professional competences	 Through the notions introduced at the course, the examples and the applications from the seminar, the Mathematical Analysis course contributes to the following: professional competences: Proper use in professional communication of the eigen concepts of calculability, complexity, programming paradigms and modeling of computer and communications systems. Theoretical foundation of the features for the designed systems. Identification of a class of problems and solving methods specific for computer systems. Using interdisciplinary knowledge, solution patterns and tools to conduct experiments and interpret their results. Applying solution by means of engineering tools and methods.
Transversal Competences	

7. DISCIPLINE OBJECTIVES (based on the specific learned competences)

7. DISCIPLINE OBJECTIVES (based	on the specific learned competences)		
7.1 General objective of the discipline	 Fundamental discipline, necessary to each special approach. One 		
	presents the fundamental notions of numerical sequences and series, functions,		
	differential calculus for vector functions, and different types of integrals:		
	improper integrals, integrals with parameter, curvilinear integrals, double and		
	triple integrals, surface integrals.		
	 Teaching the students to be able to apply differential and integral 		
	calculus to solving practical problems.		
	■ The aim of the seminar is to fix the theoretical knowledges and to		
	create calculus abilities through practical applications, exercises, and problems.		
7.2 Specific objectives	The achivement of some necessary abilities, as		
	 the study of the convergence of numerical series; 		
	Taylor exapnsion of a given function;		
	the estimate of first order and upper order differentials of vector		
	functions;		
	• the study of the extrema to vector functions, conditional extrema, and		
	their applications;		
	the differential of composite and implicit functions;		
	• the estimate of different types of integrals (improper integrals, integrals		
	with parameter, curvilinear integrals, double and triple integrals,		
	surface integrals) and their applications.		

8. CONTENT

8.1 COURSE (content units)	No hours	Teaching methods
Introduction to differential calculus		Exposition
Fundamental sequences; complete metric spaces; Banach contraction principle	3	
Numerical series	3	The teaching is
Power series, series expansions	3	explanatory and
Limits and continuity to vector functions	3	interactive at the
Partial derivatives and differentiability	3	blackboard. One ensures
Local extrema to vector functions	3	electronic course support
Implicit functions	3	and acces to updated
Conditional extrema	3	documentation. The
Introduction to integral calculus		teaching process has the
Riemann integral on the real line	3	following structure:
Improper integrals	3	- 70% theoretical
Integrals with parameter	3	presentation, based on
Curvilinear integrals of first and second kind	3	the couse support 30% interactive
Double and triple integrals	3	activity with the
Surface integrals of first and second kind	3	students.
Total	42	students.

Bibliography 8

1. C. Avramescu, C. Vladimirescu, Curs de Calcul Științific, Repr. Univ. din Craiova, 2002 (in Romanian).

2. C. Vladimirescu, Mathematical Analysis - Theory and Applications (electronic support), 2020.

8.2 Practical activities (topics/homework)	No hours	Teaching methods
Introduction to differential calculus		Solving practical
Fundamental sequences; complete metric spaces; Banach contraction principle	2	applications
Serii numericeNumerical series	2	
Power series, series expansions	2	The seminar is developed
Limits and continuity to vector functions	2	interactively with the
Partial derivatives and differentiability	2	sudents, by ensuring also
Local extrema to vector functions	2	electronic support.
Implicit functions	2	
Conditional extrema	2	
Introduction to integral calculus		
Riemann integral on the real line	2	
Improper integrals	2	
Integrals with parameter	2	
Curvilinear integrals of first and second kind	2	
Double and triple integrals	2	
Surface integrals of first and second kind	2	
Total	28	

Bibliography 8

- 1. C. Avramescu, C. Vladimirescu, Curs de Calcul Științific, Repr. Univ. din Craiova, 2002 (in Romanian).
- 2. C. Vladimirescu, Mathematical Analysis Theory and Applications (electronic support), 2020.

9. COURSE CONTENT CONJUNCTION WITH EXPECTATIONS OF THE EPISTEMIC COMMUNITY REPRESENTATIVES, PROFESSIONAL ASSOCIATIONS AND EMPLOYEE REPRESENTATIVES IN THE PROGRAM DOMAIN

Developement and and acquiring of notions, methods, and actual mathematical techniques, used to the mathematical modelling of engineering problems.

10. EVALUATION

Activity Type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Weight in the final score
10.4 Course	 The understanding the problem The mathematical statement The solving of the problem 	Exam: written test Exam assiatance: 2 internal examiners Evaluations: The written test has 4 applicative problems; each problem is mandatory and is worth a score from 1 (for free) to 10. The score at the written test is the arithmetic mean of the scores at the 4 problems.	80%
		The weight of the score at the written test in the final score is 80%. Evaluations of continuous assessments is made during the semester, based on: - a written mid-semester test, upon the students' request, with 2 applicative problems; each problem is mandatory and is worth a score from 1 (for free) to 10. The score at the mid-semester test is the arithmetic mean of the scores at the 2 problems. The weight of the score at the mid-semester test in the written test is 50%.	40%
		- a set of homeworks , whose weight in the final score is 10%.	10%
10.5 Seminar	- the degree of development of practical skills and the ability to operate with the fundamental notions, techniques, and methods introduced	The activity of the students at the seminar, whose weight in the final score is 10%. The final score is deduced by using the formula:	10%

	Sfinal = 0.8 x SWT + 0.1 x SHW + 0.1 x SS,
	where SWT is the score obtained at the final written
	test SHW is the score at the homeworks, SS is the
	score at for the activity at the seminar.
10.6 Minimum standard of performance (the minim knowledge acquiring)	num knowledge necessary to promote discipline and how to check the
	standing of the notions and basic terminology.
	e continuous assessments and the written exam.
- The the final score is made by rounding up	to integer number.
Date of completion: 01.10.2020	
Course Holder	Applicative activities holder
Assoc. Prof. Cristian VLADIMI (signature)	IRESCU, Ph. D. Assist. Prof. Laurențiu TEMEREANCĂ. Ph. D. (signature)
Date of approval:	
Head of Depar Prof. Marius B (signat	BREZOVAN, Ph. D.

.....

Note:

- 1) 2) 3) Study level – select one of the possible choices: L (licence or undergraduate)/ M (master)/ D (doctoral).
- Choose the code as defined by HG nr. 493/17.07.2013.
- Type (content) select one of the possible choices:
 - for the licence or undergraduate level: DF (fundamental discipline)/ DD (domain discipline)/ DS (specialty discipline)/ DC (complementary discipline);
 - for the master level: DA (thoroughgoing study discipline)/ DS (synthesis discipline)/ DCA (advanced knowledge discipline).
- Condition of discipline (compulsoriness) select one of the possible choices: DI (compulsory discipline)/ DO 4) (optional discipline)/ FC (facultative discipline).
- Obtained by means of adding the number of hours from 3.4 and 3.7.
- 6) A credit is equivalent with 25 – 30 hours of study (didactical activities and individual study).
- The aspect of professional and transversal competences will be considered according to the OMECTS Methodology 7) no 5703/18.12.2011. Competences are those listed in RNCIS (http://www.rncis.ro/portal/page? pageid=117,70218& dad=portal& schema=PORTAL) for the field of study from 1.4 and the study program from 1.6 in which the discipline is enrolled, in this academic sheet.
- 8) At least one title is recommended to belong to the collective co-ordinating discipline, and at least 2-3 titles to refer relevant papers for the discipline from the national and international circuit, from the library of UCv.