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PREFACE

Because of the numerous books that have already appeared about the
classical Analysis, in principle it is very difficult to bring new facts in this
field. However, the engineers, researchers in experimental sciences, and
even the students actually need a quick and clear presentation of the basic
theory, together with an extensive and efficient guidance to solve practical
problems. Therefore, in this book we tried to combine the essential (but
rigorous) theoretical results with a large scale of concrete applications of
the Mathematical Analysis, and formulate them in nowadays language.

The content is based on a two-semester course that has been given in
English to students in Computer Sciences at the University of Craiova,
during a couple of years. As an independent work, it contains much more
than the effective lessons can treat according to the imposed program.

Starting with the idea that nobody (even student) has enough time to read
several books in order to rediscover the essence of a mathematical theory
and its practical use, we have formulated the following objectives for the
present book:

1. Accessible connection with mathematics in lyceum
2. Self-contained, but well referred to other works
3. Prominence of the specific structures
4. Emphasis on the essential topics
5. Relevance of the sphere of applications.

The first objective is assured by a large introductory chapter, and by the
former paragraphs in the other chapters, where we recall the previous
notions. To help intuition, we have inserted a lot of figures and schemes.

The second one is realized by a complete and rigorous argumentation of
the discussed facts. The reader interested in enlarging and continuing the
study is still advised to consult the attached bibliography. Besides classical
books, we have mentioned the treatises most available in our zone, i.e.
written by Romanian authors, in particular from Craiova.

Because Mathematical Analysis expresses in a more concrete form the
philosophical point of view that assumes the continuous nature of the
Universe, it is very significant to reveal its fundamental structures, i.e. the
topologies. The emphasis on the structures is especially useful now, since
the discrete techniques (e.g. digital) play an increasing role in solving
practical problems. Besides the deeper understanding of the specific
features, the higher level of generalization is necessary for a rigorous
treatment of the fundamental topics like continuity, differentiability, etc.

To touch the fourth objective, we have organized the matter such that
each chapter debates one of the basic aspects, more exactly continuity,



VIII

convergence and differentiability in volume one, and different types of
integrals in part two. We have explained the utility of each topic by plenty
of historic arguments and carefully selected problems.

Finally, we tried to realize the last objective by lists of problems at the
end of each paragraph. These problems are followed by answers, hints, and
sometimes by complete solutions.

In order to help the non-native speakers of English in talking about the
matter, we recommend books on English mathematical terms, including
pronunciation and stress, e.g. the Guide to Mathematical Terms [BT4]. Our
experience has shown that most language difficulties concern speaking,
rather than understanding a written text. Therefore we encourage the reader
to insist on the phonetics of the mathematical terms, which is essential in a
fluent dialog with foreign specialists.

In spite of the opinion that in old subjects like Mathematical Analysis
everything is done, we still have tried to make our book distinguishable
from other works. With this purpose we have pointed to those research
topics where we have had some contributions, e.g. the quasi-uniform
convergence in function spaces (§ II.3 in connection to [PM2] and [PM3]),
the structures of discreteness (§ III.2 with reference to [BT3]), the unified
view on convergence and continuity via the intrinsic topology of a directed
set, etc. We also hope that a note of originality there results from:

 The way of solving the most concrete problems by using modern
techniques (e.g. local extrema, scalar and vector fields, etc.);

 A rigorous but moderately extended presentation of several facts
(e.g. higher order differential, Jordan measure in Rn, changing the

variables in multiple integrals, etc.) which sometimes are either too
much simplified in practice, or too detailed in theoretical treatises;

 The unitary treatment of the Real and Complex Analysis, centered on
the analytic (computational) method of studying functions and their
practical use (e.g. § II.4, § IV.5, Chapter X, etc.).

We express our gratitude to all our colleagues who have contributed to a
better form of this work. The authors are waiting for further suggestions of
improvements, which will be welcome any time.

The Authors

Craiova, September 2005
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CHAPTER I. PRELIMINARIES

§ I.1. SETS, RELATIONS, FUNCTIONS

From the very beginning, we mention that a general knowledge of
set theory is assumed. In order to avoid the contradictions, which can occur
in such a “naive” theory, these sets will be considered parts of a total set T,
i.e. elements of P (T). The sets are usually depicted by some specific
properties of the component elements, but we shall take care that instead of
sets of sets it is advisable to speak of families of sets (see [RM], [SO], etc).

When operate with sets we basically need one unary operation
A {A = {x T : x A} (complement),

two binary operations
(A, B)  AB = {x T : xA or xB} (union),
(A, B)  AB = {x T : xA and xB} (intersection),

and a binary relation
A=B xA iff xB (equality).

1.1. Proposition. If A, B, C  P (T), then:

(i) A (BC)=(AB)C ; A (BC)=(AB)C (associativity)

(ii) A (BC)=(AB) (AC); A (BC)=(AB) (AC)
(distributivity)

(iii) A (AB)=A ; A (AB)=A (absorption)
(iv) (A{A) B=B ; (A{A) B=B (complementary)

(v) AB=BA; AB=BA (commutativity).

1.2. Remark. From the above properties (i)-(v) we can derive the whole set
theory. In particular, the associativity is useful to define intersections and
unions of a finite number of sets, while the extension of these operations to
arbitrary families is defined by }:{}:{ ii AxIiTxIiA  and

}:{}:{ ii AxthatsuchIiTxIiA  . Some additional notations

are frequent, e.g.  = A{A for the (unique!) void set, A\B = A{B for

the difference, AB = (A\B) (B\A) for the symmetric difference, AB
(defined by AB = B) for the relation of inclusion, etc.
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More generally, a non-void set A on which the equality = , and the

operations  ,  and  (instead of {,  , respectively  ) are defined, such

that conditions (i)-(v) hold as axioms, represents a Boolean algebra.
Besides P (T), we mention the following important examples of Boolean
algebras: the algebra of propositions in the formal logic, the algebra of
switch nets, the algebra of logical circuits, and the field of events in a
random process. The obvious analogy between these algebras is based on
the correspondence of the following facts:
- a set may contain some given point or not;
- a proposition may be true or false;
- an event may happen in an experience or not;
- a switch may let the current flow through or break it;
- at any point of a logical circuit may be a signal or not.

In addition, the specific operations of a Boolean algebra allow the
following concrete representations in switch networks:

Similarly, in logical circuits we speak of “logical gates” like

A

A

Ae

eA (double switch)

A

B
A_B (parallel connection)

A B
A B^ (serial connection)

AA ee ( -gate)non

A

A BB C

C

_ __ ( -gate)or

A

AB B

C

C^ ^^ ( -gate)and
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1.3. The Fundamental Problems concerning a practical realization of a
switch network, logic circuits, etc., are the analysis and the synthesis. In the
first case, we have some physical realization and we want to know how it
works, while in the second case, we desire a specific functioning and we
are looking for a concrete device that should work like this. Both problems
involve the so-called working functions, which describe the functioning of
the circuits in terms of values of a given formula, as in the table from
bellow. It is advisable to start by putting the values 1, 0, 1, 0,… for A, then
1, 1, 0, 0,… for B, etc., under these variables, then continue by the resulting
values under the involved connectors  ,  ,  , etc. by respecting the
order of operations, which is specified by brackets. The last completed
column, which also gives the name of the formula, contains the “truth
values” of the considered formula.

As for example, let us consider the following disjunction, whose truth-
values are in column (9):

(A  B)  [( A  C) + B]

1 1 1 1 0 1 1 0 1
0 0 1 0 1 1 1 0 1
1 0 0 1 0 1 1 1 0
0 0 0 1 1 1 1 1 0
1 1 1 1 0 1 0 0 1
0 0 1 1 1 0 0 1 1
1 0 0 1 0 1 0 1 0
0 0 0 0 1 0 0 0 0
(1)(6)(3) (9) (2) (7)(5) (8)(4)

where (1), (2), etc. show the order of completing the columns.
The converse problem, namely that of writing a formula with previously

given values, makes use of some standard expressions, which equal 1 only
once (called fundamental conjunctions). For example, if a circuit should
function according to the table from below,

A B C f(A,B,C) fundamental conjunctions
1 1 1 1 ABC
0 1 1 0 -
1 0 1 0 -
0 0 1 1  A  BC
1 1 0 0 -
0 1 0 1  AB  C
1 0 0 1 A  B  C
0 0 0 0 -
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then one working function is
f(A,B,C) = (ABC) (A BC) (  AB  C) (A B  C).

This form of f is called normal disjunctive (see [ME], etc.).

The following type of subfamilies of P (T), where T  , is frequently
met in the Mathematical Analysis (see [BN1], [DJ], [CI], [L-P], etc.):
1.4. Definition. A nonvoid family F P (T) is called (proper) filter if

[F0]  F ;

[F1] A, B F ABF ;

[F2] (AF and BA) BF .
Sometimes condition [F0] is omitted, and we speak of filters in generalized
(improper) sense. In this case, F = P (T) is accepted as
improper filter.

If family F is a filter, then any subfamily B F for which

[BF] AF BB such that BA,

(in particular F itself) is called base of the filter F.

1.5. Examples. a) If at any fixed xR we define F P (T) by

F = {AR:  > 0 such that A (x – , x + )},

then F is a filter, and a base of F is B = { (x – , x + ):  >0}. It is easy

to see that {AR : AF } = {x}.

b) The family F P (N), defined by

F = {AN: nN such that A (n,  )},

is a filter in P (N) for which B = {(n,  ): nN} is a base, and

{AN : A F } = .

c) Let BP (R2) be the family of interior parts of arbitrary regular

polygons centered at some fixed (x, y)  R2 . Then

F = {A R2: BB such that AB}

is a filter for which family C , of all interior parts of the disks centered at

(x, y), is a base (as well as B itself).

1.6. Proposition. In an arbitrary total set T  we have:
(i) Any base B of a filter FP (T) satisfies the condition

[FB] A, BB CB such that C  AB.

(ii) If BP (T) satisfies condition [FB] (i.e. together with [F0] it is a
proper filter base), then the family of oversets

G = {A T : BB such that AB}

is a filter in P (T); we say that filter G is generated by B.

(iii) If B is a base of F, then B generates F .
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The proof is direct, and we recommend it as an exercise.
1.7. Definition. If A and B are nonvoid sets, their Cartesian product is
defined by A  B = {(a, b): aA, bB}.

Any part R  AB is called binary relation between A and B. In

particular, if R TT, it is named binary relation on T. For example, the

equality on T is represented by the diagonal  = {(x, x): xT}.
If R is a relation on T, its inverse is defined by

R –1 = {(x, y): (y, x)  R }.

The composition of two relations R and S on T is noted

R S = {(x, y): zT such that (x, z)  S and (z, y) R }.

The section (cut) of R at x is defined by

R[x] = {yT : (x, y)  R }.

Most frequently, a binary relation R on T may be:

Reflexive:   R ;

Symmetric: R = R –1 ;

Antisymmetric: R R –1 = ;

Transitive: R  R R ;

Directed: R [x]  R [y]  for any x, y  T.

The reflexive, symmetric and transitive relations are called equivalences,
and usually they are denoted by  . If  is an equivalence on T , then each
xT generates a class of equivalence, noted x^ = {y T : xy}.
The set of all equivalence classes is called quotient set, and it is noted T/.
The reflexive and transitive relations are named preorders.
Any antisymmetric preorder is said to be a partial order, and usually it is

denoted by  . We say that an order  on T is total (or, equivalently, (T,  )
is totally, linearly ordered) iff for any two x, y T we have either xy or
yx. Finally, (T,  ) is said to be well ordered (or  is a well ordering on
T ) iff  is total and any nonvoid part of T has a smallest element.

1.8. Examples. (i) Equivalences:
1. The equality (of sets, numbers, figures, etc.);
2. {((a, b) ,(c, d)) N2

 N2: a + d = b + c };

3. {((a, b) ,(c, d)) Z2
 Z2 : ad = bc };
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4. {(A, B)Mn(R)Mn(R): T Mn(R) such that B = T –1 A T}.

The similarity of the figures (triangles, rectangles, etc.) in R2, R3, etc., is an

equivalence especially studied in Geometry.
(ii) Orders and preorders:

1. The inclusion in P (T) is a partial order;

2. N, Z, Q and R are totally ordered by their natural orders  ;

3. N is well ordered by its natural order;

4. If T is (totally) ordered by  , and S is an arbitrary nonvoid set, then the
set FT(S) of all functions f : S T, is partially ordered by

R = {(f, g)  FT(S)  FT(S) : f(x)  g(x) at any xS}.

This relation is frequently called product order (compare to the
examples in problem 9, at the end of the paragraph).

(iii) Directed sets (i. e. preordered sets (D,  ) with directed  ):
1. (N,  ) , as well as any totally ordered set;

2. Any filter F (e.g. the entire P (T), each system of neighborhoods V (x)
in topological spaces, etc.) is directed by inclusion, in the sense that
AB iff BA .

3. Let us fix x0 R, and note

D = {(V, x)  P (R)  R: >0 such that x ( x0 –  , x0 + )V}.

The pair (D, ) is a directed set if the preorder  is defined by
(V, x)  (U, y)  UV .

The same construction is possible using neighborhoods U, V, … of a
fixed point x0 in any topological space.

4. The partitions, which occur in the definition of some integrals, generate
directed sets (see the integral calculus). In particular, in order for us to
define the Riemannian integral on [a, b]  R, we consider partitions of

the closed interval [a, b], i.e. finite sets of subintervals of the form
 = { ],[ 1 kk xx  : k = 1, 2, …, n; a = x0 < x1 <…< xn = b},

for arbitrary n N*. In addition, for such a partition we choose different

systems of intermediate points

ξ () = { ξ k  [xk-1 , xk]  : k= n,1 } .

It is easy to see that set D, of all pairs (, ξ ()), is directed by relation

 , where (΄, ξ (΄)) (΄΄, ξ (΄΄)) iff ΄  ΄΄ .

There is a specific terminology in preordered sets, as follows:
1.9. Definition. Let A be a part of T, which is (partially) ordered by  . Any
element x0  T , for which x x0 holds whenever xA, is said to be an
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upper bound of A. If x0 A, then it is called the greatest element of A (if
there exists one, then it is unique!), and we note x0 = max A.

If the set of all upper bounds of A has the smallest element x , we say that

is the supremum of A, and we note x = sup A.
An element x* A is considered maximal iff A does not contain elements

greater than x*(the element max A, if it exists, is maximal, but the converse
assertion is not generally true).

Similarly, we speak of lower bound, smallest element (denoted as min A),
infimum (noted inf A), and minimal elements. If sup A and inf A do exist for
each bounded set A, we say that (T,  ) is a complete (in order).

Alternatively, instead of using an order R, we can refer to the attached

strict order R \ . The same, if R is an order on T, and xT, then R[x] is

sometimes named cone of vertex x (especially because of its shape).
If a part C of T is totally (linearly) ordered by the induced order, then we

say that C is a chain in T.
An ordered set (T, R) is called lattice (or net) iff for any two x, y T

there exist inf {x, y} = xy and sup {x, y} = x y. If the infimum and the
supremum exist for any bounded set in T, then the lattice is said to be
complete (or σ - lattice). A remarkable example of lattice is the following:
1.10. Proposition. Every Boolean algebra is a lattice. In particular, P (T) is

a (complete) lattice relative to  .
Proof. We have to show that  is a (partial) order on P (T), and each

family {AiP (T) : i I } has an infimum and a supremum. Reasoning as

for an arbitrary Boolean algebra, reflexivity of  means AA=A. In fact,
according to (iii) and (ii) in proposition 1.1., we have

AA = [A (AB)] [A (AB)] = (AA) (AB) = A (AB) = A ,
From AB and BA, we deduce that B = AB = A, hence  is

antisymmetric. For transitivity, if AB and BC we obtain AC since
C = BC = (AB)C = A (BC) = AC.

Let us show that sup {A,B} = AB holds for any A,BP (T). In fact,
according to (iii), AAB and BAB. On the other hand, if AX and
BX, we have AX = A and BX = B, so that

X (AB) = (XA)  (XB) = AB,
i.e. AB  X. Similarly we can reason for inf {A,B} = AB, as well as for
arbitrary families of sets in T. }

1.11. Remark. The above proof is based on the properties (i)-(v), hence it
is valid in arbitrary Boolean algebras. If limited to P (T), we could reduce

it to the concrete expressions of AB, AB, AB, etc. According to the
Stone’s theorem, which establishes that any Boolean algebra A is



Chapter I. Preliminaries

8

isomorphic to a family of parts, verifying a property in A as for P (T) is
still useful.
1.12. Definition. Let X and Y be nonvoid sets, and R XY be a relation

between the elements of X and Y. We say that R is a function defined on X

with values in Y iff the section R [x] reduces to a single element of Y for

any xX. Alternatively, a function is defined by X, Y and a rule f , of
attaching to each x X an element y Y. In this case we note y = f(x),
x y = f(x), f : X Y, etc.
We say that f : X Y is injective (1:1, i.e. one-to-one) iff f(x) f(y)

whenever x y.
If for any yY there exists x in X such that y = f(x), then f is called

surjective (or onto). If f is both injective and surjective, it is called bijective
(1:1 map of X on Y , or 1:1 correspondence between X and Y).
Any function f : X Y can be extended to P (X) and P (Y) by considering

the direct image of AX , defined by
f(A) = { f(x) : xA},

and the inverse image of B Y , defined by
f  (B) = {xX : f(x) B}.

If f is bijective, then f  (y) consists of a single element, so we can speak
of the inverse function f –1 ,defined by

x = f –1(y)  y = f(x).
If f : XY and g : YZ, then h : XZ, defined by

h(x) = g(f(x)) for all xX,
is called the composition of f and g , and we note h = g f.
The graph of f : XY is a part of X Y , namely

Graph (f ) = {(x, y)  X Y : y = f(x)}.
On a Cartesian product XY we distinguish two remarkable functions,

called projections, namely PrX : XY X , and PrY : XY Y , defined by
PrX (x, y) = x , and PrY (x, y) = y .

In the general case of an arbitrary Cartesian product, which is defined by

i
Ii

X

X = })(|:{ ii

Ii
XifXIf 


,

we get a projection Pri :( i
Ii

X

X )Xi for each Ii , which has the values

Pri :(f ) = f (i) .
Sometimes we must extend the above notion of function, and allow that

f(x) consists of more points; in such case we say that f is a multivalued (or
one to many) function. For example, in the complex analysis, nf  is

supposed to be an already known 1:n function. Similarly, we speak of
many to one, or many to many functions.
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This process of extending the action of f can be continued to carry
elements from P (P (X)) to P (P (Y)), e.g. if V  P (X), then

f (V ) = {f (A) P (Y) : AV }.

1.13. Examples. Each part A  X () is completely determined by its
characteristic function fA : X{0, 1}, expressed by

fA(x) =








A.x1

Axif0

if

In other terms, P (X) can be presented as the set of all functions defined on
X and taking two values. Because we generally note the set of all functions
f : XY by Y X , we obtain 2X = P (X).

We mention that this possibility to represent sets by functions has led to
the idea of fuzzy sets, having characteristic functions with values in the
closed interval [0,1] of R (see [N-R], [KP], etc.). Formally, this means to

replace 2X = P (X) by [0,1]X . Of course, when we work with fuzzy sets, we
have to reformulate the relations and the operations with sets in terms of
functions, e.g. gf  as fuzzy sets means gf  as functions, {f = 1 – f ,

},{ gfgf max , },{ gfgf min , etc.

1.14. Proposition. Let f : XY be a function, and let I, J be arbitrary
families of indices. If AiX and Bj Y hold for any iI and jJ, then:
(i) f ({Ai : iI}) = {f (Ai) : iI};
(ii) f ({Ai : iI}) {f (Ai) : iI};
(iii) f  ({Bj : jJ}) = { f  ( Bj) : jJ };
(iv) f  ({ Bj : jJ}) = { f  ( Bj) : jJ };
(v) f  ({B) = { [f  (B)] holds for any B Y ,

while f ({A) and {[f (A)] generally cannot be compared.

The proof is left to the reader.
The following particular type of functions is frequently used in the

Mathematical Analysis:
1.15. Definition. Let S be a nonvoid set. Any function f : NS is called

sequence in S. Alternatively we note f(n) = xn at any nN, and we mark

the sequence f by mentioning the generic term (xn).
A sequence g:NS is considered to be a subsequence of f iff g = fh

for some increasing h:NN (i.e. pq  h(p) h(q)). Usually we note

h(k) = nk , so that a subsequence of (xn) takes the form )(
knx .

More generally, if (D,  ) is a directed set, then f : D S is called
generalized sequence (briefly g.s., or net) in S. Instead of f , the g.s. is
frequently marked by (xd), or more exactly by (xd)dD , where xd = f(d),
dD. If (E, ) is another directed set, then g:E S is named generalized
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subsequence (g.s.s., or subnet) of f iff g = fh, where h:ED fulfils the
following condition (due to Kelley, see [KJ], [DE], etc.):
[s] dD eE such that (e aEdh(a)).

Similarly, if we note h(a)= da , then a g.s.s. can be written as )(
adx .

1.16. Examples. a) Any sequence is a g.s., since N is directed.

b) If D is the directed set in the above example 1.8. (iii)3, then f :DR ,

expressed by f(V, x) = x, is a generalized sequence.
c) Let us fix some [a, b] R, then consider the directed set (D,  ) as in the

example 1.8. (iii)4, and define a bounded function f : [a, b] R. If to each

pair (δ, ξ) D we attach the so called integral sum

f  (δ, ξ) = f(ξ1)(x1 - x0) + … + f(ξn)(xn - xn-1),

then the resulting function f : DR represents a g.s. which is essential in

the construction of the definite integral of f .

1.17. Remark. The notion of Cartesian product can be extended to
arbitrary families of sets {Ai : iI}, when it is noted X{Ai : iI}. Such a
product consists of all “choice functions” f : I{Ai : iI}, such that
f(i)Ai for each iI. It was shown that the existence of these choice
functions cannot be deduced from other facts in set theory, i.e. it must be
considered as an independent axiom. More exactly, we have to consider the
following:

1.18. The Axiom of Choice (E. Zermelo). The Cartesian product of any
nonvoid family of nonvoid sets is nonvoid.

We mention without proof some of the most significant relations of this
axiom with other properties (for details see [HS], [KP], etc.):
1.19. Theorem. The axiom of choice is logically equivalent to the
following properties of sets:
a) Every set can be well-ordered (Zermelo);
b) Every nonvoid partially ordered set, in which each chain has an upper

bound, has a maximal element (Zorn);
c) Every nonvoid partially ordered set contains a maximal chain

(Hausdorff);
d) Every nonvoid family of finite character (i.e. A is a member of the

family iff each finite subset of A is) has a maximal member (Tukey).

1.20. Remark. The axiom of choice will be adopted throughout this book,
as customarily in the treatises on Classical Analysis. Without insisting on
each particular appearance during the development of the theory, we
mention that the axiom of choice is essential in plenty of problems as for
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example the existence of a (Hamel) basis in any linear space ( {0},
compare to xI.3), the existence of g such that fg = IY , where f : XY, etc.

PROBLEMS § I.1.

1. Verify the De Morgan’s laws:

{(AB) = {A{B and {(AB) = {A{B.

Using them, simplify as much as possible the Boolean formulas:
(a) {[A (B (A{B))], and

(b) {[({XY)  ({YX)].

Hint. {X is characterized in general Boolean algebras by the relations

X{X = T, and X{X =  .

2. Show that (P (T),  ) and (P (T),  ) never form groups.

Hint. , respectively T, should be the neutral elements, but the existence of
the opposite elements cannot be assured anymore.

3. Verify the equalities:
(i) A\(BC)= (A\B)\C (iv) A\(BC) = (A\B)  (A\C)
(ii) A\(A\B) = AB (v) (A\B) C = (AC)\(BC)
(iii) (AB)\C = (A\C)  (B\C) (vi) (A\B)\ A =  .

Hint. Replace X\Y = X{Y, and use the De Morgan ‘s laws.

4. Prove that :
(a) A (BC) = (A B) C
(b) A (BC) = (AB) (AC)
(c) A A =
(d) A B = A iff B = 
(e) A B (AC)  (BC) and give an example when  holds.

Hint. Take C =  and AB as an example in (e).

5. Let A be the set of all natural numbers that divide 30, and let us define
x y = the least common multiple of x and y
xy = the greatest common divisor of x and y
 x = 30/x .
Show that A is a Boolean algebra in which x y = (x y)/( xy), and

represent A as an algebra of sets.
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Hint. If T = {a, b, c}, then P (T) represents A as follows:

 1, {a}2, {b}3, {c}5, {a, b}6 = [2, 3] = 32  , etc.,
hence T is determined by the prime divisors.

6. A filter F P (T) is said to be tied (fixed in [H-S], etc.) if \F  ,

and in the contrary case we say that it is free. Study whether

F = {?A 2 P (T): {A is finite}

is a tied or free filter.
Hint. If T is finite, then A and {A are concomitantly in F , hence [F0] fails.

F is free, since otherwise, if x 2\F  , then because {x} is finite, we

obtain T \ {x)2F , which contradicts the hypothesis x 2\F .

7. Let (D, 6) be a directed set. Show that

F = {AD: a2D such that A {b2D: b>a}}

is a filter in D. Moreover, if f: D!T is an arbitrary net, then f(F )P (T)

is a filter too (called elementary filter attached to the net f ). Compare f(F )

by inclusion in P (P (T)) to the elementary filter attached to a subnet of f.
Hint. The elementary filter attached to a subnet is greater.

8. Let F(T) be the set of all proper filters F P (T), ordered by inclusion.

A filter F , which is maximal relative to this order, is called ultrafilter.

Show that F is an ultrafilter iff, for every A T, either A2F or {A2F

hold. Deduce that each ultrafilter in a finite set T is tied.
Hint. Let F be maximal. If A\B =? for some B2F , then {AB, hence

{A2F . If A\B  for all B2F , then filter F [{A} is greater than

F , which contradicts the fact that F is maximal.

Conversely, let F be a filter for which either A2F or {A2F hold for

all A T. If filter G is greater than F , and A2G \F , then {A2F . But

A2G and {A2G cannot hold simultaneously in proper filters.

9. In duality to filters, the ideals I P (T) are defined by putting T in the

place of  in [F0], [ instead of \ in [F1], and  instead of  in [F2].

Show that if F P (T) is a filter, then



§ I.1. Sets, Relations, Functions

13

I = { A T: {A2F }

is an ideal. Reformulate and solve the above problems 6-8 for ideals.
Hint. Each ideal is dual to a filter of complementary sets.
10. If R is a relation on T, let us define

R0 = δ, Ri+1 = RiR, RT = {Ri : i =1,2,…}, and R* = R0  RT.

Show that :
(a) RT is transitive (also called transitive closure of R);

(b) R* is a preorder (called reflexive and transitive closure);

(c) If R S , then R* S* ;

(d) R* S*  ( R S)* ;

(e) (R*)* = R* .

11. Let f :XY, g : YZ, and h :ZW be functions. Show that :
1) (h g)  f =h (g f);
2) f IX = f, where IX is the identity of X ( i.e. IX (x) = x, xX);
3) f, g injective (surjective)  g f injective (surjective);
4) g f injective (surjective)  f injective (g surjective);
5) f, g bijective ( g f ) – 1 = f – 1

 g – 1 ;
6) f [f  (B)A] = B f(A) , but f  [f (A) B]A f  (B) ;
7) f [f  (B)) B, with equality if f is surjective, and

f  (f (A)) A, with equality if f is injective (i.e. 1:1).

12. Let f : X Y be a function, and suppose that there exists another
function g: Y X, such that gf = IX and fg =IY . Prove that f must be
1:1 from X onto Y, and g = f – 1 .

13. In X = R2 we define the relations:

 = {((x, y),(u, v)) : either (x<u) or (x = u and y  v)};
Π = {((x, y),(u, v)) : xu and yv };
K = {((t, x),(s, y)) : s – t │x – y│}.

Show that  is a total order (called lexicographic), but Π and K (called 
product, respectively causality) are partial orders. Find the corresponding
cones of positive elements, establish the form of the order intervals, and
study the order completeness.

14. In a library there are two types of books:
Class A, consisting of books cited in themselves, and
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Class B, formed by the books not cited in themselves.
Classify the book in which the whole class B is cited.
Hint. Impossible. The problem reduces to decide whether class B belongs
to B, which isn’t solvable (for further details see [RM],[R-S], etc.).
15. Let us suppose that a room has three doors. Construct a switch net that
allows to turn the light on and off at any of the doors.
Hint. Write the work function of a net depending on three switches a, b, c,
starting for example, with f(1,1,1) = 1 as an initial state, and continuing
with f(1,1,0) = 0, f(1,0,0) = 1,etc. ; attach a conjunction to each value 1 of
the function f , e.g. abc to f(1,1,1) = 1, a   b  c to f(1,0,0) = 1, etc.

16. Construct a logical circuit, which realizes the addition of two digits in
the base 2. How is the addition to be continued by taking into account the
third (carried) digit?
Hint. Adding two digits A and B gives a two-digit result:

A B c s
1 1 1 0
0 1 0 1
1 0 0 1
0 0 0 0

where s is the sum-digit and c is the carried-digit. We can take c = AB
and s = (AB)  (AB). The circuit has the form (called semi-
summarizer, or half-adder):

Adding three digits yields a two-digits result too, as in the following table:

A B C c s
1 1 1 1 1
0 1 1 1 0
1 0 1 1 0
0 0 1 0 1
1 1 0 1 0
0 1 0 0 1
1 0 0 0 1
0 0 0 0 0

^ ^_ e

A

B

c

s
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The resulting digits c and s may be obtained by connecting two
semi-summarizes into a complete summarizer (alternatively called full-
adder, as in [ME], etc.).
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§ I.2. NUMBERS

The purpose of this paragraph is to provide the student with a unitary idea
about the diagram:

C  K

N  Z  Q  R  . . .

D

2.1. Definition. We consider that two sets A and B (parts of a total set T)
are equivalent, and we note A~B, iff there exists a 1:1 correspondence
between the elements of A and B. Intuitively, this means that the two sets
have “the same number of elements”, “the same power”, etc. The
equivalence class generated by A is called cardinal number, and it is

marked by A = card A.

There are some specific signs to denote individual cardinals, namely:
2.2. Notations. card 0 (convention!)

card 1A iff A is equivalent to the set of natural satellites of Terra;

card 2A iff A is equivalent to the set of magnetic poles;

. . .
card 1 nA iff for any xA we have card nxA }){\( ;

. . .

All these cardinals are said to be finite, and they are named natural
number. The set of all finite cardinals is noted by N, and it is called set of

natural numbers. If A ~ N, then we say that A is countable, and we note

card 0A (or card 0cA  , etc.), which is read aleph naught. If A ~P (N),

then A has the power of continuum, noted card A = card (2N) =  = 02 (or

card cA  , etc.), where 2N ~ P (N).

In order to compare and compute with cardinals, we have to specify the
inequality and the operations for cardinals. If a = card A, and b = card B,
then we define:
1. ba  iff there is C such that A ~ C  B;

2. a + b = card )( BA , where AB =  ;

3. a · b = card )( BA ; and

4. ab = card )( BA .
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Now we can formulate the most significant properties of 0 and  :
2.3. Theorem. = is an equivalence, and  is a total order of cardinals.
In these terms, the following formulas hold:
(i) 0 < 02 =  ;
(ii) 0 +0 = 0 , 00 = 0 ;
(iii)  + = , and  =  .

The proof can be found in [HS], etc., and will be omitted.
To complete the image, we mention that according to an axiom, known as

the Hypothesis of Continuum, there is no cardinal between 0 and .

The ARITHMETIC of N is based on the following axioms:

2.4. Peano’s Axioms.
[P1] 1 is a natural number (alternatively we can start with 0);
[P2] For each n N, there exists the next one, noted n N;

[P3] For every n N, we have n  1;

[P4] n = m iff n  = m ;
[P5] If 1 P, and [n  P implies nP], then P = N .

The last axiom represents the well-known induction principle.
The arithmetic on N involves an order relation, and algebraic operations:

2.5. Definition. If n, m N, then :

1. n  m holds iff there exists pN such that m = n+ p ;

2. n+ 1 = n , and n+ m = (n+ m) (addition);
3. n·1 = n , and n·m = n·m+ n (multiplication).

We may precise that the algebraical operations are defined by induction.

2.6. Remark. It is easy to verify that (N, +) and (N, .) are commutative

semi-groups with units, and (N,  ) is totally ordered (see [MC], [ŞG], etc.).

The fact that (N, +) is not a group expresses the impossibility of solving the

equation a + x = b for arbitrary a, bN. In order to avoid this

inconvenience, set N was enlarged to the so-called set of integers. The idea

is to replace the difference b – a, which is not always meaningful in N, by a

pair (a, b), and to consider (a, b) ~ (c, d) iff a+ c = b+ d . The integers will
be classes (a, b)^ of equivalent pairs, and we note the set of all integers by

Z = N  N / ~ .

The operations and the order relation on Z are defined using arbitrary

representatives of the involved classes, and we obtain:
2.7. Theorem. (Z,+, .) is a commutative ring with unit, and (Z,  ) is totally

ordered such that  is compatible to the algebraical structure of ring.
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2.8. Remark. Set Z is not a field, i.e. equation ax = b is not always

solvable. Therefore, similarly to N, Z was enlarged, and the new numbers

are called rationals. More exactly, instead of a quotient b/a , we speak of a
pair (a, b), and we define an equivalence (a, b) ~ (c, d) by ad = bc. The
rational numbers are defined as equivalence classes (a, b)^ , and the set of
all these numbers is noted Q = Z  Z / ~.

Using representatives, we can extend the algebraical operations, and the
order relation, from Z to Q , and we obtain:

2.9. Theorem. (Q , + , .) is a field. It is totally ordered, and the order  is

compatible with the algebraical structure.

2.10. Remark. Because Q already has convenient algebraical properties,

the next extension is justified by another type of arguments. For example,
1; 1.4; 1.41; 1.414; 1.4142; …

which are obtained by computing 2 , form a bounded set in Q, for which

there is no supremum (since 2 Q). Of course, this “lack” of elements is a

weak point of Q. Reformulated in practical terms, this means that equations

of the form x2 – 2 = 0 cannot be solved in Q.

There are several methods to complete the order of Q; the most frequent

is based on the so-called Dedekind’s cuts. By definition, a cut in Q is any

pair of parts (A, B), for which the following conditions hold:
(i) AB = Q ;

(ii) a <b whenever aA and bB (hence AB = );
(iii) [(a  a A)  aA], and [(b bB)b B].

Every rational number xQ generates a cut, namely (Ax , Bx) , where

Ax = {aQ : a  x}, and Bx = {b Q : b > x}.

There are still cuts which cannot be defined on this way, as for example
A = Q \ B , and B = {x Q+ : x2 >2} ; they define the irrational numbers.

2.11. Definition. Each cut is called real number. The set of all real
numbers is noted R. A real number is positive iff the first part of the

corresponding cut contains positive rational numbers. The addition and the
multiplication of cuts reduce to similar operations with rational numbers in
the left and right parts of these cuts.

2.12. Theorem. (R, +, .) is a field. Its order  is compatible with the

algebraical structure of R ; (R,  ) is a completely and totally ordered set.
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2.13. Remark. The other constructions of R (e.g. the Cantor’s equivalence

classes of Cauchy sequences, or the Weierstrass method of continuous
fractions) lead to similar properties. More than this, it can be shown that the
complete and totally ordered fields are all isomorphic, so we are led to the
possibility of introducing real numbers in axiomatic manner:

2.14. Definition. We call set of real numbers, and we note it R, the unique

set (up to an isomorphism), for which:

1. (R, + , · ) is a field;

2.  is a total order on R, compatible with the structure of a field ;

3. (R,  ) is complete (more exactly, every nonvoid upper bounded subset

of R has a supremum, which is known as Cantor’s axiom).

2.15. Remark. Taking the Cantor’s axiom as a starting point of our study
clearly shows that the entire Real Analysis is essentially based on the order
completeness of R. At the beginning, this fact is visible in the limiting

process involving sequences in R (i.e. in convergence theory), and later it is

extended (as in §II.2, etc.) to the general notion of limit of a function.
We remember that the notion of convergence is nowadays presented in

a very general form in the lyceum textbooks, namely:
2.16. Definition. A number l R is called limit of the sequence (xn) of real

numbers (or xn tends to l in the space S = R, etc.), and we note

l =
n

lim xn ,

(or xn l , etc.) iff any neighborhood ( l – , l + ), of l, contains all the
terms starting with some rank, i.e.

  > 0 n0 () N such that [n > n0()  | xn – l| < ].

If a sequence has a limit it is said to be convergent, and otherwise it is
considered divergent.

Among the most important consequences of the axioms of R (due to

Cantor, Weierstrass, etc.) we mention the following basic theorem:
2.17. Theorem. (Cantor). If Nnnn ba ]),([ is a decreasing sequence of

closed intervals in R, i.e.

[a0, b0]  [a1, b1] … [an, bn] …
then:
a) The sequences (an) and (bn) are convergent;
b) I   {[an, bn] : nN}   ;

c) [inf {bn - an : n2N} = 0]  [
n

lim an = l =
n

lim bn ] I = {l}.
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Proof. a) Sequence (an) is increasing and bounded by each bm , hence there
exists  = sup an . Consequently, for any  >0 there exists n()N such that

 –  < an()  , hence also  –  < an()  an   , whenever n > n().
This means that  =

n
lim an . Similarly,  = inf bn is the limit of (bn).

b) I   because    , hence I  [ , ] . At its turn,   must be

accepted since the contrary, namely  <  , would lead to  < ap and bq < 
for some p, q N, and further   bs < ap and bq < at   for some s, t N,

which would contradict the very definition of  and  .
c) Of course, if inf {bn – an : n2N} = 0, then  = , because for arbitrary

nN we have bn – an   –  . If we note the common limit by l, then we

finally find that I = {l}. }

There are several more or less immediate but as for sure useful
consequences of this theorem, as follows:
2.18. Corollary. The following order properties hold:

a) If a0 is fixed in R, and a 
n

1
is valid for any nN* , then a = 0;

b) The sequence 








n

1
is convergent to 0 ;

c) Any increasing and upper bounded sequence in R is convergent, as well

as any decreasing and lower bounded one (but do not reduce the
convergence to these cases concerning monotonic sequences!);

d) If (xn) is a sequence in R, xn  [an, bn] for all nN, and the conditions of

the above theorem hold, then xn l (the “pincers” test).
e) If an 0, lR, and | xn – l| < an holds for all nN, then xn l.

2.19. Remark. In spite of the good algebraical and order properties of R,

the necessity of solving equations like x2 + 1 = 0 has led to another
extension of numbers. More exactly, we are looking now for an
algebraically closed field C, i.e. a field such that every algebraical equation

with coefficients from C has solutions in C. To avoid discussions about the

condition i2 = -1, which makes no sense in R, we introduce the new type of

numbers in a contradiction free fashion, namely:

2.20. Definition. We say that C = RR is the set of complex numbers (in

axiomatical form) if it is endowed with the usual equality, and with the
operations of addition and multiplication defined by:

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)(c, d) = (ac – bd, ad + bc).
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2.21. Theorem. (C, +, ·) is a field that contains (R, +, ·) as a subfield, in the

sense that λ  ( λ, 0)  is an embedding of R in C, which preserves the

algebraic operations.

The axiomatical form in the above definition of C is valuable in theory,

but in practice we prefer simpler forms, like:
2.22. Practical representations of C. By replacing ( λ,0) by λ in the above 

rule of multiplying complex numbers, we see that C forms a linear space of

dimension 2 over R (see §I.3, [V-P], [AE], etc.). In fact, let B = {u, i},

where u = (1,0) and i = (0,1), be the fundamental base of this linear space.
It is easy to see that u is the unit of C (corresponding to 1R), and i2 = - u.

Consequently each complex number z = (a, b) can be expressed as
z = au + bi = a + bi ,

which is called algebraical (traditional) form. The components a and b of
the complex number z = (a, b) are called real, respectively imaginary parts
of z, and they are usually noted by

a = Re z, b = Im z.
Starting with the same axiomatic form z=(a, b), the complex numbers can

be presented in a geometrical form as points in the 2-dimensional linear
space R2, when C is referred to as a complex plane. Addition of complex

numbers in this form is defined by the well-known parallelogram’s rule,
while the multiplication involves geometric constructions, which are more
complicated (better explained by the trigonometric representation below).
The geometric representation of C is advisable whenever some geometric

images help intuition.
Replacing the Cartesian coordinates a and b of z = (a, b) from the initial

geometric representation by the polar ones (see Fig.I.2.1. below), we obtain
the modulus

ρ = |z| = 22 ba  ,
and the argument,

θ = arg z = 












t IVhe quadranfor z in tπ
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where α = arctg
a
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2
,

2


. So we are led to the trigonometric form

of the complex number z = ( ρ, θ) R+ x [0, 2π), namely

z = ρ (cos θ + i sin θ ).
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We mention that the complex modulus |z| reduces to the usual absolute
value if z R, and the argument of z generalizes the notion of sign from

the real case. Using the unique non-trivial (i.e. different from identity)

idempotent automorphism of C, namely z = a + ib  z = a - ib, called

conjugation, which realizes a symmetry relative to the real axis, we obtain

|z| = ( zz  )1/2 , i.e. the norm derives from algebraical properties.

The complex numbers can also be presented in the matrix form

z = 








 ab

ba
,

where a, b R, based on the fact that C is isomorphic to that subset of

M2,2(R), which consists of all matrices of this form .

Finally we mention the spherical form of the complex numbers, that is
obtained by the so called stereographical projection. Let S be a sphere of

diameter ON = 1 , which is tangent to the complex plane C at its origin.

Each straight line, which passes through N and intersects C, intersects S

too. Consequently, every complex number z = x + iy, expressed in R3 as

z(x,y,0), can be represented as a point P(ξ, η, ζ)  S \ {N} (see Fig.I.2.2.).

This correspondence of S \ {N} to C is called stereographical projection,

and S is known as the Riemann’s sphere (see the analytical expression of
the correspondence of z to P in problem 9 at the end of this section).

The Riemann’s sphere is especially useful in explaining why C has a

single point at infinity, simply denoted by  (with no sign in front!), which
is the correspondent of the North pole N  S (see §II.2.).
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The fact that C is algebraically closed (considered to be the fundamental

theorem of Algebra) will be discussed later (in chapter VIII), but the special
role of C among the other sets of numbers can be seen in the following:

2.23. Theorem. (Frobenius). The single real algebras with division (i.e.
each non-null element has an inverse), of finite dimension (like a linear
space), are R, C and K (the set of quaternions; see [C-E], etc.).

In other words, these theorems say that, from algebraical point of view, C

is the best system of numbers. However, the “nice” and “powerful” order
structure of the field R is completely lost in C. More exactly:

2.24. Proposition. There is no order on C, to be compatible with its

algebraical structure (but different from that of R).

Proof. By reductio ad absurdum (r.a.a.), let us suppose that  is an order
relation on C such that the following conditions of compatibility hold:

z  Z and   ζ C  z+ ζ  Z + ζ ;
z  Z and 0 ζ  z ζ  Z ζ .

In particular, 0  z implies 0 zn for all nN. On the other hand from z

and  positive in C, and λ and μ positive in R, it follows that λ z + μ  is

positive in C. Consequently, if we suppose that 0 z C \ R+ , then all the

elements of C should be positive, hence the order  would be trivial. }

2.25. Remark. We mention that R can be extended to other ordered

algebras, but we have to renounce several algebraical properties. Such an
alternative is the algebra of double numbers, D = R x R, where, contrarily

to i2 = - 1 , we accept that j2 = +1, i.e. (0,1)2 = (1,0).
The list of systems of numbers can be continued; in particular, the spaces

of dimension 2n can be organized as Clifford Algebra (see [C-E], etc.).
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Besides numbers, there are other mathematical entities, called vectors,
tensors, spinors, etc., which can adequately describe the different quantities
that appear in practice (see [B-S-T], etc.).

Further refinements of the present classification are possible. For
example, we may speak of algebraic numbers, which can be roots of an
algebraical equation with coefficients from Z , respectively transcendent

numbers, which cannot. For example, 2 is algebraic, while e and  are

transcendent (see [FG], [ŞG], etc.).
Classifying a given number is sometimes quite difficult, as for example

showing that R \ Q. Even if we work with  very early, proving its

irrationality is still a subject of interest (e.g. [MM]). The following
examples are enough sophisticated, but accessible in the lyceum framework
(if necessary, see §III.3, §V.1, etc.).

2.26. Proposition. Let us fix p, q, n N* , and note

Pn (x) =
!

)(

n

pqxx nn 
, and xn = 



0

sin)( dxxxPn .

We claim that :

1. Both Pn
(s) (0), and Pn

(s) 








q

p
Z for any order of derivation s N;

2.
n

lim xn = 0 ;

3. R \ Q.

Proof. 1. If we identify the binomial development of Pn with its Taylor
formula (compare to proposition 17, §III.3), then we can write:

Pn (x) = 



n

k

knkknk
n

kn xqpC
n0 !

1
)1( = 



n

s

ss
n xP

s

2

0

)( )0(
!

1
,

where

Pn
(s) (0) =













 n1,kk,ns
!

)!(
(-1)

2nsornsif0

k-n ifqpC
n

kn kknk
n

Because
!

)!(

n

kn 
N, as well as k

nC N, it follows that Pn
(s) (0)  Z for all

s in N, including s = 0 (when Pn is not derived).

Changing the variable, x  t = x -
q

p
, we obtain

Pn(x) =
!

)(

n

pqtt nn 
= Qn(t),
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hence Pn
(s) 









q

p
Z reduces to Qn

(s)(0) Z, which is proved like the former

membership Pn
(s) (0) Z.

2. If we note μ = sup{| x(qx-p) | : x[0,  ]}, we obtain

| xn |  


0

sin)( dxxxPn  
 

o

n

dx
n!

= 
!n

n
,

which shows that xn 0 (Z* !).

3. Integrating 2n+1 times by parts, we obtain

xn = - cos x [Pn(x)-…+(-1)nPn
(2n)(x)] 

0 .

If we accept that  = 
q

p
Q , then from property 1 we will deduce xnZ*,

which contradicts 2. }

2.27. Convention. Through this book we adopt the notation for any one
of the fields R or C, especially to underline that some properties are valid

in both real and complex structures (e.g. see the real and the complex linear
spaces in §I.3, etc.).

A special attention will be paid to the complex analysis, which turns out
to be the natural extension and even explanation of many results involving
real variables. Step by step, the notion of real function of a real variable is
extended to that of complex function of a complex variable:
2.28. Extending functions from R to C may refer to the variable, or to the

values. Consequently, we have 3 types of extensions:
a) Complex functions of a real variable. They have the form

If : C , where I R ,

and represent parameterizations of curves in C (compare to §VI.1). These

functions are obtained by combining the real parametric equations of the
curves. For example, the real equations of a straight line which passes
through z0  and has the direction ζ , lead to the complex function

z = z0 + t ζ ,  t R .

Similarly, the circle of center z0 and radius r , in C, has the

parameterization
z = z0 + r(cos t + i sin t), t [0, 2 ).

b) Real functions of a complex variable, which are written as
Df : R , where D C .

They have a complex variable, but real values, and the simplest examples
are | · |, arg, Re, and Im. Their graphs can be done in R3

 C x R.
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c) Complex functions of one complex variable. They represent the most
important case, which is specified as

f : D C , where D  C .

The assertion “D is the domain of f “ is more sophisticated than in R.

More exactly, it means that:
 f is defined on D ;
 D is open in the Euclidean structure if C ;

 D is connected in the same structure (see §III.2. later).
The action of f is frequently noted Z = f(z), which is a short form for:

C D 3  Zzfz f )( C .

If we identify z = x + iy C with (x, y)R2 , then f can be expressed by

two real functions of two real variables, namely
f(z) = P(x, y) + i Q(x, y),

where the components P and Q are called real part, respectively imaginary
part of f . This form of f is very convenient when we are looking for some
geometric interpretation. Drawing graphs of such functions is impossible
since C x C  R4, but they can be easily represented as transformations of

some plane domains (no matter if real or complex). In fact, if iYXZ  ,
then the action of f is equivalently described by the real equations









),(

),(

yxQY

yxPX
, (x, y)D R2  C .

In other words, considering f = (P, Q), we practically reduce the study of
complex functions of a complex variable to that of real vector functions of
two real variables. On this way, many problems of complex analysis can be
reformulated and solved in real analysis. This method will be intensively
used in §III.4 (see also [HD], [CG], etc.).

Alternatively, if z, the argument of f , is expressed in trigonometric form,
then the image through f becomes

f(z) = P(ρ, θ)+ i Q(ρ, θ) .
If we use the polar coordinates in the image plane to precise f(z) by its

modulus | f(z)| = M(x, y), and its argument arg f(z) = A(x, y), then
f(z) = M(x, y)[cos A(x, y) + i sin A(x, y)] .

Finally, if both z and Z are represented in trigonometric form, then
f(z) = R(ρ, θ)[cos B(ρ, θ) + i sin B(ρ, θ)].
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PROBLEMS § I.2.

1. Let A be an infinite set (i.e. card A  0), and let us fix a A. Show that
A  [A \ {a}].

Hint. Consider a sequence (xn) in A, such that x0 = a, and define a bijection
}]{\[: aAAf  , e.g.










 nn

n

xxifx

xxifx
xf

1

)( .

2. Show that there are infinitely many prime numbers (in N).

Hint. If 2,3,5,…,p are the former prime numbers, then 1...532  pn

is another prime number, and obviously n > p.

3. Show that 2 , e, ln 2 Q.

Hint. In the contrary case, we should have 2 =
q

p
, with p and q relatively

prime integers. The relation p2 = 2q2 shows that both p and q are even.
To study e , let us note a partial sum of its series by

sn = 


n

k k0 !

1
,

and evaluate

!

1

)1()!1(

2
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2

1

2

1
1

)!1(

1
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1

2

1
1
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1
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nnn

nnnn
se n























































Thus we obtain en! – sn n! <
n

1
, where sn n!N. If we accept that e =

q

p

for some p, q Z, then en! Z too, for enough large n, but it is impossible

the difference of two integers to be under
n

1
.

Finally, ln 2 =
q

p
means ep = 2p, hence e should be even (nonsense).

4. Compare the real numbers sin 1, sin 2, and sin 3.
Hint. Develop sin 2α , and use 3  .
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5. Write in the binary system (basis 2) the following numbers (given in

basis 10): 15N; -7 Z; 2/3, 0.102, -2.036 Q;  , 2 R \ Q.

What gives the converse process?

6. Prove by induction that for any nN* we have:

a)
n

n

n

12

!

1
...

!2

1

!1

1 
 ,and

b) (1+x)n
 1+ nx if x > –1.

7. Verify the sub-additivity of the absolute value in R and C.

Hint. It is sufficient to analyze the case of C, where we can use the

Euclidean structure of the complex plane, generated by the scalar product
<(x, y), (u, v)> = xu + yv.

8. Find the formulas which correlate the coordinates of P S , and zC

through the stereographical projection. Use them to show that the image of
any circle on the sphere is either circle or straight line in the plane.
Hint. N(0,0,1), P(ξ, η, ζ) and z(x, y, 0) are collinear, hence

1

1

1

1
222

2









yxzN

ON

zN

PN

yx


.

Point PS is on a circle if in addition it belongs to a plane
A ξ + B η + C ζ + D = 0.

The image is a straight line iff N belongs to the circle, i.e. C + D = 0.

9. Write the parameterization of the following curves in the plane C:

ellipse, hyperbola, cycloid, asteroid, Archimedes’s spiral, cardioid, and the
Bernoulli’s lemniscates.
Hint. We start with the corresponding real parameterizations in Cartesian or
polar coordinates, which are based on the formulas:

Ellipse: x =a cos t, y =b sin t , ]2,0[ t ;

Hyperbola: x =a ch t, y =b sh t , t R ;

Parabola: y = ax2 + bx + c, x R ;

Cycloid: x =a(t-sin t), y =a(1-cos t) , ]2,0[ t ;

Asteroid: x =a cos3 t, y = b sin3 t , ]2,0[ t ;

Archimedes’s spiral: r = kθ , ;
Cardioid: r = a (1+cos θ), ),(   ; and

Bernoulli’s lemniscate: r2 = 2 a2 cos 2θ , ],[],[
4

5
4

3
44

  .

If necessary, interpret the explicit equations as parameterizations. Combine
these expressions to obtain z = x + iy, or z = r(cos  + i sin ) .
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10. Using the geometrical meaning of  and arg in C, find that part of C

which is defined by the conditions 1 | z – i | < 2 and 1< arg z  2.
Show that if | z1 | = | z2 | = | z3 | >0, then

1

2

13

23 arg
2

1
arg

z

z

zz

zz





.

Hint. The points z1, z2, z3 belong to a circle of center O, and

arg
z


= arg ζ – arg z .

Measure the angle inscribed in this circle, which has the vertex at z3 .

11. Let D = {x+ jy: x, yR} , where j2 = +1, be the algebra of double

numbers, and let us note K = {(x+ jy, u+ jv): u – x |v – y|}. Show that K

is a partial order on D , which extends the order of R, and it is compatible

with the algebraical structure of D. In particular, the squares (x + jy)2 are

always positive.
Hint. The cone of positive double numbers is delimitated by the straight
lines y = x , and contains R+.

12. Solve the equation

0242242 234567  zzzzzzz

in N, Z, Q, R, C, and D .

Hint. Use the Horner’s scheme to write the equation in the form

0)1)(2)()(1( 22
2
12  zzzz .

Pay attention to the fact that z2 > 0 always holds in D (see problem 11 from

above), so that 012 z has no solutions, while 012 z has 4 solutions

in this space.
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§ I.3. ELEMENTS OF LINEAR ALGEBRA

The linear structures represent the background of the Analysis, whose
main purpose is to develop methods for solving problems by a local
reduction to their linear approximations. Therefore, in this paragraph we
summarize some results from the linear algebra, which are necessary for
the later considerations. A general knowledge of the algebraic structures
(like groups, rings, fields) is assumed, and many details are omitted on
account of a parallel course on Algebra (see also [AE], [KA], [V-P], etc.).

As usually,  denotes one of the fields of scalars, R or C.

3.1.Definition. The nonvoid set L is said to be a linear space over Γ iff it

is endowed with an internal addition + : L x LL, relative to which

(L,+) is a commutative group, and also with an external multiplication by

scalars · :  x L  L , such that :

[L1] (x) = ()x for any ,    and x L;

[L2] (x+ y) = x + αy for any    and x, y  L;

[L3] x1 = x for any x L.

The elements of L are usually called vectors. Whenever we have to

distinguish vectors from numbers or other elements, we may note them by
an arrow, or an line over, e.g. x


, or x . In particular, the neutral element

relative to the addition is noted  , or simply 0 (but rarely 0


, or 0 ), if no
confusion is possible. It is called the origin, or zero of L.

If  = R, we say that L is a real linear space, while for  = C the space

L is said to be complex.

Any nonvoid part S of L is called linear subspace of L iff it is closed

relative to the operations of L. In particular, L itself and {} represent

(improper) subspaces, called total, respectively null subspaces.

3.2. Examples. a)  itself is a linear space over  . In particular, C can be

considered a linear space over R, or over C. Obviously, R is a linear

subspace of the real linear space C, which is organized as R2 .
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b) The real spaces R2 or R3 of all physical vectors with the same origin,

e.g. speeds, forces, impulses, etc., represent the most concrete examples.
Alternatively, the position vectors of the points in the geometrical space,

or the classes of equivalent free vectors form linear spaces. The addition is
done by the parallelogram rule, while the product with scalars reduces to
the change of length and sense. Of course, R2 is a linear subspace of R3,

more accurately up to an isomorphism.
c) The sets Rn and Cn, where nN*, are linear spaces if the operations

with vectors are reduced to components according to the following rules:
(x1, x2, …, xn) + (y1, y2…, yn) = (x1+ y1, x2+ y2,…xn+ yn) , and
 (x1, x2, …, xn) = (x1, x2,…, xn).

d) The set N of all numerical sequences is a linear space relative to the

operations similarly reduced to components (i.e. terms of the sequences). In
particular, Rn is a linear subspace of RN , for any nN*.

e) If L is a linear space, and T is an arbitrary set, then the set FL(T),

of all functions f :TL, “borrows” the structure of linear space from L,

in the sense that, by definition, (f + g)(t) = f(t) + g(t), and (f) (t) =  f(t) at
any tT. This structure is tacitly supposed on many “function spaces” like
polynomial, continuous, derivable, etc.
3.3. Proposition. The following formulas hold in any linear space:
(i) 0 x =   =  , and conversely,
(ii)  x =  implies either  = 0, or x =  ;
(iii) (-) x =  (-x) = –  x.
Proof. From 0 x + 0 x = (0+ 0)x = 0 x +  we deduce 0 x =  ; the rest of
the proof is similar, and we recommend it as an exercise. }

A lot of notions and properties in linear spaces simply extend some
intuitive facts of the usual geometry, as for example:
3.4. Definition. Any two distinct elements x, y L determine a straight

line passing through these points, expressed by
 (x, y) = {z=(1- )x +  y:   }.

A set A L is called linear manifold iff  (x, y)A whenever x, yA.

Any linear manifold HL, which is maximal relative to the inclusion

 , is called hyper plane.
That part (subset) of the line  (x, y), which is defined by

[x, y] = {z = (1- )x +  y:  [0,1]  R},

is called line segment of end-points x and y. A set CL is said to be

convex iff [x, y] C whenever x, y  C .



§ I.3. Elements of Linear Algebra

31

It is easy to see that any linear subspace is a linear manifold, and any
linear manifold is a convex set. In this sense we have:
3.5. Proposition. The set AL is a linear manifold if and only if its

translation to the origin, defined by
A – x0 = {y = x – x0 : xA},

where x0 A, is a linear subspace of L .

Proof. If A is a linear manifold, then S = A – x0 is closed relative to the

addition and multiplication by scalars. In fact, if y1 ,y2 S , then they have

the form y1 = x1 – x0 and y2 = x2 – x0 , for some x1 , x2 A. Consequently,

y1 + y2 = (x1 + x2 – x0) – x0 S, because

x1 + x2 – x0 = 2 







 021

2

1

2

1
xxx A .

Similarly, if y = x - x0 , and   , then
 y = ((1– ) x0 +  x) a – xo S.

Conversely, if S = A – x0 is a linear subspace of L, then A = S + x0

is a linear manifold. In fact, for any x1 = y1 + x0 and x2 = y2 + x0 from A,

their convex combination has the form
(1-) x1 +  x2 = ((1- ) y1 +  y2 )+ x0 S + x0 ,

which shows that  (x1,x2)A . }

3.6. Corollary. HL is a hyper plane if and only if it is the translation

at some x0 H of a maximal linear subspace W , i.e. H = W + x0 .

The geometrical notions of co-linearity and co-planarity play a central
role in the linear structures theory. Their generalization is expressed in
terms of “linear dependence” as follows:
3.7. Definition. For any (finite!) set of vectors x1 ,…, xn L, and any

system of scalars n ,...,1 , the expression

1 x1 + 2 x2 +…+ n xn ,
which equals another vector in L, is called linear combination of these

vectors. The set of all linear combinations of the elements of a subset
AL is called linear span (or linear cover) of A, and it is noted Lin A .
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If there exists a null linear combination with non-null coefficients, i.e. if
1 x1 + 2 x2 +…+ n xn = 

holds for at least one k  0, then the vectors x1, x2,…, xn are said to be
linearly dependent (or alternatively, one of them linearly depends on the
others). In the contrary case, they are linearly independent.

Family F = {xiL: iI } is called independent system of vectors iff

any of its finite subfamily is linearly independent. If such a system is
maximal relative to the inclusion, i.e. any xL is a linear combination of

some 
ki

x F , ik I, k = n,1 , then it is called algebraical (or Hamel) base

of L. In other terms, we say that F generates L, or Lin F = L .

3.8. Examples. a) The canonical base of the plane consists of the vectors

i=(1,0) and j=(0,1); sometimes we note i and j , while in the complex

plane we prefer u = (1, 0) and i = (0, 1). Similarly, B = {i, j, k}, where

i=(1,0,0), j=(0,1,0) and k=(0,0,1), represents the canonical base of R3 .

Alternatively, we frequently note i = e1 , j = e2 , and k = e3 (sometimes
with bars over).

b) System B = {
nj

j
i ,1

)(


 : i = n,1 }, where

j
i =









jiif1

jiif0

is the Kronecker’s symbol, is a base (named canonical) in n. Explicitly,
B = {(1,0,…,0), (0,1,…,0), …, (0,0,…,1)}.

c) The space of all polynomials has a base of the form
{1, t, t2,…, tn,…},

which is infinite, but countable. If we ask the degree of the polynomials not
to exceed some nN*, then a base of the resulting linear space consists of

{1, t, t2,…, tn} .
d) Any base of R, considered as a linear space over Q, must contain

infinitely many irrationals, hence it is uncountable.

3.9. Theorem. If B1 and B2 are bases of L , and B1 is finite, namely

card B1 = n  N*, then card B2 = n too.

Proof. In the contrary case, let us consider that
B1 = {e1, e2,…, en} and B2 = {f1, f2,…, fm}

are two bases of L, and still n<m. We claim that in this case there exist a

system of non-null numbers  λ1, λ2, …, λm  Γ , such that
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λ1f1 + λ2 f2 + …+λm fm =  ,
which contradicts the fact that B2 is linearly independent . In fact, since

B1 is a base, it generates B2 , i.e.

fi = 


n

j
jijea

1

for all i= m,1 . Replacing these expressions of fi in the above combination,

and taking into account the independence of B1 , we obtain the following
homogeneous system of linear equations

a11 λ1 +a21 λ2 +…+ am1 λm = 0
a12 λ1 +a22 λ2 +…+ am2 λm = 0
………………………………
a1n λ1 +a2n λ2 +…+ amn λm = 0 .

This system really has non-null solutions since n<m . }

This theorem shows that the number of elements of a base is an intrinsic
property of the considered linear space, i.e. it is the same for any choice of
the base. In particular, if some base of L is finite / infinite, then any other

base is also finite / infinite. In other terms, this theorem is the background
of the following important notion:
3.10. Definition. If a linear space L contains infinite systems of linearly

independent vectors, then L is said to be a space of infinite dimension. If

L contains only finite systems of linearly independent vectors we say that

L is finite dimensional, and the maximal cardinal of such systems (which

equals the cardinal n  N* of any base) is called the dimension of L, and it

is noted n = dim L .

3.11. Theorem. Any change of base in a finite dimensional space is
represented by a non-singular square matrix.
Proof. If A = {e1, e2,…, en} is the “old” base of L, and B = {f1,f2 ,…, fn}

is the “new” one, then the change A B is explicitly given by the

formulas fi = 


n

j
jijet

1

, where i= n,1 . This is the exact meaning of the fact

that the change of base is “represented” by the matrix (tij)Mn,n (). In

short, this transformation may be written in the matrix form
(e1 e2 … en) (tij)T = (f1 f2 … fn) ,

where T denotes transposition (i.e. interchange of rows with columns); note
the dimensions of the involved matrices, namely (1, n)(n, n) = (1, n) .
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We claim that matrix (tij) is non-singular, i.e. Det (tij)  0. In fact, in the
contrary case we find a system of non-null numbers 1, …, n like in the
proof of theorem I.3.6. (this time m = n), such that 1 e1 + …+ n en =  .
Such a relation is still impossible because the elements of any base are
linearly independent. }

3.12. Remarks. a) The above representation of the change A B is
easier expressed as a matrix relation if we introduce the so called transition
matrix T = (tij)T . More precisely, the line matrices formed with the
elements of A and B are related by the equality

(e1 e2 … en) T = (f1 f2 … fn ) .
b) Continuing the idea of representing algebraical entities by matrices, we

mention that any vector x L is represented in the base B = {ei : i= n,1 }

by a column matrix of components X = (x1 x2 … xn)T . This representation is
practically equivalent to the development x = x1 e1 + x2 e2 +…+ xn en ,
hence after the choice of some base B in L, we can establish a 1:1

correspondence between vectors x L and matrices X Mn,1() .

c) Using the above representation of the vectors, it is easy to see that any
matrix A Mn,n () defines a function U :LL, by identifying y = U(x)

with Y =A X. A remarkable property of U is expressed by the relation
U(x + y) =  U(x) +  U(y) ,

which holds for any x, y L and  ,   , i.e. U “respects” the linearity.

This special property of the functions, which act between linear spaces,
is marked by a specific terminology:
3.13. Definition. If X and Y are linear spaces over the same field , then

any function f : XY is called operator; in the particular case Y = 

we say that f is a functional, while for X = Y we prefer the term

transformation . The operators are noted by bold capitals U, V, etc., and the
functionals by f, g, etc.

An operator U:XY is said to be linear iff it is additive , i.e.

U(x+ y) = U(x) + U(y) ,  yx, X ,

and homogeneous, that is
U(x) = U(x) , x X , and  .
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These two conditions are frequently concentrated in one, namely
U (x + y) =  U(x) +  U(y) ,

which is considered valid for any x, y X and  ,   . The set of all

linear operators between X and Y is usually noted by L (X, Y) .

The linear functionals are similarly defined, and X* = L (X, ) is the

usual notation for the space of all linear functionals on X . Alternatively,

X* is called algebraical dual of X .

3.14. Examples. 1) If X = n and Y = m for some n, m N*, then any

operator U : XY, which is represented by a matrix, is linear. More

exactly, there exists A = (aik)  Mm,n(), like in the above remark I.3.12.,

such that y= U(x) means that

yi= 


n

k
kik xa

1

, for any i= m,1 ,

where x = (x1, x2, …, xn) and y = (y1, y2, …, ym) .
In particular, any function f: n   of values

f(x) = a1 x1 + a2 x2 +… +an xn

is a linear functional.
2) Let X = C1

R(I) be the space of all real functions which have continuous

derivatives on I , and Y = CR(I) be the space of all continuous functions

on I , where I = (a, b)  R (see also chapter IV below). Then the process of

deriving, considered as an operator D: XY, represents a linear operator.

In fact, because

y = D(x) = x / =
dt

dx
,

means D(x)(t) = x /(t) at any t (a, b), the linearity of D reduces to the
rules of deriving a sum and a product with a scalar.
3) Let X = Y = CR(K) be the function spaces from above, where this

time K = [a, b]  R, and let A : K x KR be continuous on K 2 relative to

each of its variables (but uniformly in respect to the other). Then the
operator of integration I :XY is also linear, where y =I(x) means


b
a

dttxtsAsy )(),()( .
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In particular, the correspondence expressed by

X3x  
b

a
dttxy )(

defines a linear functional on X (see also part II).

4) If X = (L ,  .,. ) is a scalar product space over  (see also §II.3.),

then each y L generates a linear functional fy :L  , of values

fy (x) = <x , y>.
5) Let S be an arbitrary nonvoid set, for which X = F(S) denotes the

space of all functions x :S  . To each tS we may attach a linear
functional ft :X  , defined by ft (x) = x(t) .

The algebraical organization of L (X, Y) represents the starting point in

the study of the linear operators, so we mention that:
3.15. Proposition. (i) L (X, Y) is a linear space relative to the internal

addition, defined at any x X by

(U + V)(x) = U(x) + V(x) ,
and the multiplication by scalars (from the same field ), given by

(U)(x) =  U(x).
(ii) L (X, Y) is an algebra relative to the above operations of addition and

multiplication by scalars, and to the internal composition, defined by
(VU) (x) = V(U(x))

at any x X . This algebra has an unit element.

Proof. (i) (L (X, Y), +, .) verifies the axioms of a linear space.

(ii) (L (X, Y), +,  ) is a ring in which

(V)  (U) =  (V U)
holds for any ,   and U, V  L (X, Y). The unit element, noted  ,

and called identity, is defined by (x)= x . }

The proof of the following properties is also routine.
3.16. Proposition. If X and Y are linear spaces, and U: XY is a

linear operator, then:
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i) The direct image of any linear subspace LX, i.e.

U(L) = {y = U(x) Y: xL },

is a linear subspace of Y.

ii) The inverse image of any linear subspace M Y, i.e.

U (M) = {xX : U(x) M } ,

is a linear subspace of X .

iii) U is invertible iff its kernel (nucleus), defined by
Ker (U) = { xX : U(x) = 0} = U (0),

reduces to 2X, or more exactly, to the null subspace {}.

Several general properties of the linear functionals and operators can be
formulated in “geometric” terms, being involved in the so-called equations
of the linear manifolds, as follows:
3.17. Theorem. If f  X* \ {0} , and k, then

H = {xX : f(x) = k}

is a hyper plane in X, and conversely, for any hyper plane HX there

exists f  X* \ {0} , and k, such that xH iff f (x) = k .

Proof. For any x0 H it follows that

L = H – x0 = f  (0)

is a linear subspace, hence H is a linear manifold. We claim that L is

maximal. In fact, we easily see that LX because f 0, hence there exists

aX \ L, where f (a) 0. Therefore, at any xX, we may define the

number  =
)(

)(

af

xf
, and the vector y = x – a. Since f (y) = 0, it follows that

yL, so we may conclude that

X = Lin (L  {a}) ,

i.e. L is a maximal subspace of X .

Conversely, let H be a hyper plane in X, x0 H, and L = H – x0 .
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Then L is a maximal linear subspace of X , i.e. X \ L , and for any

a X \ L there is a unique decomposition of x X, x = y + a, where

yL and   . On this way we obtain a functional f : X  , which

attaches a number    to each xX, according to the above

decomposition, i.e. f (x) = . It is easy to see that f is linear, so it remains
to show that

H = { x X: f(x) = f(x0)}.

In fact, if xH, then x = y + x0 for some yL, hence from f(y) = 0 we

deduce that f(x) = f(x0) . Conversely, equation f(x) = f(x0) leads to
y = x – x0 L = f  (0),

i.e. xL + x0 = H . }

Going back to the problem of representing linear operators, we mention
its simple solution in the case when they act on finite dimensional spaces:

3.18. Theorem. Let B = {ei : i = n,1 } and C = {fj : j= m,1 } be bases of

the linear spaces X and Y over the same field , such that xX, and

yY are represented by the matrices X, respectively Y. If U: XY is a

linear operator, then there is a unique matrix AMm,n() such that

y = U(x)
is equivalent to Y = AX . In short, U is represented by A .
Proof. By developing each U(ei) in base C , we obtain

U(ei) = 


m

j
jij fa

1

, i= n,1 .

Evaluating U at an arbitrary x = x1 e1 + …+ xn en yields

U(x) =
















m

j
jij

n

j
i fax

11

= j

m

j

n

i
iij fxa 

 









1 1

.

The comparison of this expression with y = U(x) = y1 f1 + …+ ym fm leads
to the relations

yj = 


n

i
iij xa

1

, j = m,1 .

If we note A = (aji
* ), where aji

* = aij , i.e. A =(aij)T, then the above relations
between the components take the matrix form Y = AX . }
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3.19. Corollary. The values of any linear functional f:X , where X is

a finite (say n-) dimensional linear space, have the form
f(x) = a1 x1 + …+ an xn .

Proof. Take m = 1, A = (a1 … an), and X = (x1 … xn)T in the previous
theorem, where C = {1}. }

It is remarkable that algebraical operations with operators correspond to
similar operations with the representative matrices. More exactly:
3.20. Proposition. Let X and Y be as in the above theorem 3.18.

a) If U, V  L (X, Y) are represented by A, B Mm,n(), then U+V is

represented by A+B ;
b) If A Mm,n() represents U L (X, Y), then A represents U for

any   ;
c) Let U L (X, Y) be represented by AMm,n() as before, and let Z

be another liniar space over the same field  where dimZ = pN

 If BMp,n() represents V L (Y, Z) relative to some base of Z,

then BA represents V U .
Proof. The first two assertions are immediate. Even property c) is a direct
consequence of the above theorem 3.18, since VU(x) = V(U(x)) is
equivalent to Y = AX , and Z = BY , i.e. Z = B(AX) = (BA)X. }

Because any representation (of vectors, linear operators, functionals,
etc.) essentially depends on the chosen bases, it is important to see how
they change by passing from a base to another.
3.21. Theorem. Let T Mn,n() represent the transition from the base A

to B in the linear space L of finite dimension n .

a) If X represents a vector xL in the base A , then X = T –1 X

represents the same vector in the base B ;

b) If a linear operator U:LL is represented by matrix A in the base

A , and by B in B , then the following equality holds:
B = T –1 A T .

Proof. a) According to theorem 11 and remark 12 from above, the change
of A into B is represented by a non-singular matrix T = (tij)T Mn,n(),

in the sense that the numbers tij occur in the formulas
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fi = 


n

j
jijet

1

, ni ,1 ,

which relates ej  A to fi B . By replacing these expressions of fi in

the developments of an arbitrary x L in these two bases, namely

x1 e1 +…+ xn en = nfxfx n ...11 ,

we obtain X = T X , hence finally X = T –1 X .
b) Let the action of UL(X, Y), that is y = U(x), be alternatively

expressed by Y =AX in base A , respectively by XBY  in base B .

According to the part a), we have X = T –1 X , and Y = T –1 Y, wherefrom
we deduce that T –1 Y = B T –1 X . Finally, it remains to equalize the two
expressions of Y, namely TBT –1 X = AX, where X is arbitrary. }

The linear operators are useful in comparing linear spaces. In particular,
it is useful to identify those spaces which present only formal differences,
which are said to be isomorphic. More exactly:
3.22. Definition. Let X and Y be linear spaces over the same field . We

consider them isomorphic iff there exists a linear operator U L (X, Y),

which realizes a 1:1 correspondence of their elements. In such a case we
say that U is an isomorphism of X and Y .

Establishing the isomorphism of the finite dimensional spaces basically
reduces to the comparison of the dimensions:
3.23. Theorem. Two finite dimensional linear spaces X and Y, over the

same field , are isomorphic iff dimX = dimY .

Proof. If dimX = dimY, then we put into correspondence the vectors with

identical representations in some fixed bases.
Conversely, let U be an isomorphism of these spaces, and let us note

dimX = n , and dimY = m . Since U: XY realizes an injective linear

correspondence, it maps X into a linear subspace of Y, and carries any

base of X into a base of U(X). Consequently dim U(X) = nm. But U is

also surjective, hence there exists U –1 , which is linear too. Applying the
same reason to U –1 , we obtain the opposite inequality mn. Consequently
we obtain m = n . }
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Because each particular representation of an operator depends on the
chosen bases, knowing the intrinsic (i.e. independent of base) elements and
properties has an extreme importance. In this sense we mention:
3.24. Definition. Number  is called proper (or characteristic) value

of the linear operator U:LL iff there exists x 0 in L such that

Ux = x .
In this case x is named proper vector of U, and

L = {xL: Ux = x } = Ker (U - I)

is the proper subspace of U, corresponding to .

3.25. Remark. The study of proper values, proper vectors, etc., leads to
the so-called spectral theory (see [CR], [CI], etc.). One of the starting
points in this theory is the notion of spectrum of a linear operator. More
exactly, the spectrum of U consists of those  for which operator U – I
is not invertible. If L has a finite dimension, the study becomes algebraic,

i.e. it can be developed in terms of matrices, determinants, polynomials,
etc., by virtue of the following:
3.26. Theorem. Let L be a n-dimensional linear space over , and let U

be a linear transformation of L. If matrix AMn,n() represents U, then

  is a proper value of U iff it is a root of the characteristic polynomial
PA () = Det (A - In) ,

where In is the unit matrix of order n . The corresponding proper vectors
are represented by the non-null solutions of the homogeneous system

(A - In)X = 0 .
The proof is direct, but useful as exercise.

Because any complex polynomial has at least one root in C, it follows that:

3.27. Corollary. The linear operators on complex linear spaces of finite
dimension have at least one proper value (respectively one proper vector).

Of course, there exist linear transformations of real spaces, which have
no proper vectors, since their characteristic polynomials have no root in R

(e.g. the rotation of the real plane). Anyway, all these facts do not depend
on the base because:
3.28. Theorem. Let L be a linear space over , and let U:LL be a

linear transformation of L. If two matrices A, BMn,n() represent U,

then their characteristic polynomials coincide.
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Proof. According to theorem I.3.21.b, if T represents the change of base,
then B = T –1 A T . Consequently,

| B - In | = | T –1 A T – T –1 In T | = | T –1 |·| A - In |·| T | ,
where A stands for Det A. Because | T –1 | · | T | = 1, it follows that

| B - In | = | A - In | . }

Replacing  by A in A - In makes no sense; however, we may evaluate
PA (A), for which we have:
3.29. Theorem (Cayley-Hamilton) Each square matrix A Mn,n()

vanishes its characteristic polynomial.
Proof. Let us note the characteristic polynomial of A by

PA() = a0 + a1  + … + an 
n ,

and let A*() be the adjoint matrix of A - In . We remember that A*() is
obtained by transposing A - In, and replacing each element by its algebraic
complement, which represent the former two of three operations in the
calculus of the inverse matrix. Consequently, we have

(A - In) A*() = PA() In .
Because the matrix value of a product generally differs from the product

of the values, we cannot replace here  by A. However, a simple evaluation
of the degrees shows that the adjoint matrix has the form

A*() = B0 + B1  + … + Bn-1 
n-1 .

The identification of the matrix coefficients leads to the relations:
A B0 = a0 In

A B1 – B0 = a1 In

. . . . . . . . . . .
A Bn-1 – Bn-2 = an-1 In

– Bn-1 = an In .
Multiplying by appropriate powers of A, and summing up the resulting

relations gives PA(A) = On . }

3.30. Corollary. The nth power of every n-dimensional matrix linearly
depends on its previous powers.
Proof. We have an = (-1)n  0 in

PA() = a0 + a1  + … + an 
n ,

and PA(A) = On . }
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PROBLEMS § I.3.

1. Show that the set of all rectangular matrices, which have two rows and
three columns, with elements in , forms a linear space. Write a basis of
this space, and identify its dimension. Generalization.
Hint. Prove the axioms of a linear space. Take matrices with a single non-
null element in the base. The dimension of Mn,m () is nm .

2. Prove that e1 = (2, 1, -1), e2 = (1, 2, 0), and e3 = (1, -1, 3) are linearly
independent vectors in R3 , and find the coordinates of x = (5, 0, 1) in the

base {e1, e2, e3}.
Hint. Condition 1 e1 + 2 e2 + 3 e3 = 0 (respectively = x) reduces to an
homogeneous (respectively non-homogeneous) system of linear equations
with a non-null determinant.

3. Show that the set of solutions of any homogeneous system of m linear
equations in n unknowns, of rank r, is a linear subspace of Rn , which has

the dimension d = n – r . Conversely, for any linear subspace L, for which

dimL= d , there exists a system in n unknowns, of rank r = n – d , whose

solutions exactly fill L .

Hint. Select r equations in r unknowns, which has non-null determinant,
and construct L as the linear span of the resulting solutions. Conversely, if

{e1, e2,…, ed} is a base of L, then noting eI = ( inii  ,...,, 21 ) for any

di ,1 , the equations take the form x1 i1 + x2 i2 +… + xn in = 0 .

4. Show that any hyper plane in R3 is defined by three of its points

Pk = (xk , yk , zk), k= 3,1 ,

and identify the linear functional that occurs in its equation. Generalization.
Hint. Write the equation of the plane in the form

0

1

1

1

1

333

222

111 

zyx

zyx

zyx

zyx

.

The generalization refers to n instead of 3, or C instead of R .
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5. Find the dimension and write a base of the subspace L of Rn, where the

equation of L is x1 + x2 +…+ xn = 0. In particular, for n=4, show that the

section of L through the 4-dimensional cube of equations | xi |  1, i= 4,1 ,

is a 3-dimensional solid octahedron, and find its volume.
Hint. B = {ei = (-1, 1, i , … , n-1, i) ; i = 1,…,n-1} is a base of L, and

dimL = n-1. The section contains some vertices of the cube, namely

(1,1,-1,-1), (1,-1,1,-1), (1,-1,-1,1),
(-1,1,1,-1), (-1,1,-1,1), (-1,-1,1,1),

which are the intersection of L with the edges of the cube. To see that

these points are vertices of a regular octahedron it is useful to evaluate the
distances between them.

6. Let X and Y be two linear subspaces of the linear space L, and let us

note r = dimX, s = dimY, i= dim (X  Y), and u = dim [Lin(X  Y)].

Prove that r + s = u + i .
Hint. In the finite dimensional case, construct some bases of X and Y by

completing a base of X Y . If at lest one of X and Y has an infinite

dimension, then also u =  .

7. Find the intersection of the straight lines a + x, and b + y, in R5,

where a = (2,1,1,3,-3), x = (2,3,1,1,-1), b = (1,1,2,1,2), and y = (1,2,1,0,1).
Hint. Study the consistency of the system (in matrix form)

(2 1 1 3 –3)T +(2 3 1 1 –1)T = (1 1 2 1 2)T +(1 2 1 0 1)T .

8. Precise all the mutual positions of two planes in Rn , n >1.

Hint. Write the planes in the form
X = {x + a + bRn : ,  R} ,

Y = {y + c + d Rn : , R} ,

and study the consistency of the matrix system
x + a + b = y + c + d

in four unknowns If A is the principal matrix of the system, B is
the completion of A, and we note r = rank A, and r = rank B, then one of the

following six cases is possible: (r = 4,2 ) and (either r = r , or r = r + 1). In

some cases we can describe the intersection in geometric terms.
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9. A linear operator U: R4
R4 is represented by the matrix

A =





















3121

1351

2103

1021

relative to some base B = {e1, e2, e3, e4}. Find the matrices, which
represent U in the bases:

(i) C = { e1, e3, e2, e4};

(ii) D = { e1, e1+ e2, e1+ e2+e3, e1+ e2+e3+e4 };

(iii) E = the canonical base of R4 .

Hint. Identify the transition matrices.

10. Let the operator U:M2,2()M2,2() be defined by

U(A) = T –1 A T,
where T is a fixed non-singular matrix. Show that U is linear, and find the
matrix which represents U in the canonical base

.
10

00
,

01

00
,

00

10
,

00

01

































Show that U (as a binary relation) is an equivalence, but in particular, for

A = 








10

01
, and B = 









10

11
,

we have (A,B)U, even if A and B have the same proper values.
Hint. Introduce the components of T. Since A is the unit of M2,2(), we

have U(A) = A B for any nonsingular matrix T , even if
Det(A - I)  Det(B - I) .

11. Show that if the matrices A and B represent the same linear operator
U: n

 n in different bases, then:
(i) Det A = Det B , and
(ii) Trace A = Trace B .

Hint. Use the fact that B = T –1 A T holds for some non-singular transition

matrix T Mn,n(), and take Det . Express Trace A
.def

 


n

i
iia

1

in terms of

proper values of A, taking into account the relations between the roots and
the coefficients of the characteristic equation, Det (A - I) = 0 .
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12. Analyze whether the following matrices

A =



















11-1-1

1-11-1

1-1-11

1111

, B =



















1000

002-2

02-2-3

03-5-6

reduce to a diagonal form by a change of bases. Find the new bases and the
corresponding diagonal form.
Hint. Consider that these matrices represent some linear operators on R4 in

respect to the canonical base C, and look for a transition matrix T, such
that T –1 A T, respectively T –1 B T are diagonal matrices. In particular, if

B = { f1 = (1,1,0,0), f2 = (1,0,1,0), f3 = (1,0,0,1), f4 = (1,-1,-1,-1)} ,
is the new base, then matrix A transforms into



















2-000

0200

0020

0002

.

Matrix B cannot be reduced to a diagonal form. Alternatively we may
study whether relation U(x) = x holds for four linearly independent
vectors (i.e. U has such proper vectors).

13. Establish the general form of a linear functional f : !, where  is

either R or C.

Hint. Take a base in , e.g. B = {1}, and apply theorem 3.18 from above.
The form is f (z) = k z, where k = f (1).

14. Reduce the rotation of angle 2 in the plane to a rotation of angle  and
a central symmetry.
Hint. Apply the Cayley-Hamilton theorem to the matrix

A = 








 



cossin

sincos
,

which represents a rotation of angle . The condition PA(A) = On becomes
A2 = (2 cos ) A – I2 ,

where A2 represents a rotation of angle 2 .
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§ I.4. ELEMENTS OF TOPOLOGY

Mathematical Analysis is definable as a combined study of two types of
structures, namely algebraical and topological (from  τoπωσ = place). This
is visible at the very beginning, when the neighborhoods of the points are
defined in spaces already organized from the algebraic point of view, most
frequently in linear spaces. The topological structures are necessary in the
definition of a limit, which represents the main notion of the Mathematical
Analysis. In the chapters of this theory, mainly dedicated to convergence,
continuity, to differential and integral calculus, we study several particular
cases of limits.

The elements of topology, which are presented in this section, will be
grouped in two parts: the former will be devoted to the general topological
notions and properties; the second concerns spaces where the topology
derives from some particular structures (e.g. norms or metrics).

§ I. 4. Part 1. GENERAL TOPOLOGICAL STRUCTURES

We assume that elements of analysis on R are already known, and we

take them as a starting point. We remind that the neighborhoods of a point
xR are defined using the notion of interval,

(a, b) = {2R: a <  < b},

which derives from the order of R . More exactly, a set VR is said to be a

neighborhood of x iff there exists ba, R such that Vbax  ),( .

Alternatively, instead of (a, b) we may use a symmetric interval centered
at x , of radius > 0, which is

I(x, ) = {yR: x –  < y < x+  }.

If we try to introduce a similar structure in C, which represents another

very important set of numbers, we see that this technique doesn’t work any
more, since C has no proper order, compatible with its algebraic structure.

The alternative definition is obtained if the symmetric intervals from above
are replaced by discs (balls, or spheres) relative to the usual norm
(modulus) on R, namely

I(x, ) = S(x, ) = { yR : | x – y | <  }.

Using the modulus in C, the notion of disc (sphere, ball) of center z and

radius r > 0, is similarly defined by
S(z, r) = {C: |  – z | < r} .
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The topology of C can be specified by the following:

4.1. Definition. Set VC is called neighborhood of zC iff there exists

r > 0, such that V S(z, r) .
The family of all neighborhoods of z will be noted by V (z). The

structure of C, realized by defining the family V (z) of neighborhoods for

each zC, is called Euclidean topology of C .

4.2. Remark. So far, we have two examples of topologies, which concern
two of the most usual sets of numbers. They are similar in many respects,
especially in the role of the modulus, which turns out to be the Euclidean
metric. Being derived from Euclidean metrics, the resulting topologies are
called Euclidean too. The construction of a topology attached to a metric
will be studied in more details in the second part of this section. For now it
is important to make evident those properties of the neighborhoods, which
are significant enough to be adopted in the general definition.

4.3. Proposition. The systems of neighborhoods, corresponding to the
usual (Euclidean) topologies on R and C, satisfy the conditions:

[N1] xV for each V V (x);

[N2] If VV (x) and UV, then UV (x);

[N3] If U, V V (x) , then UV V (x);

[N4] For any VV (x) there exists WV (x) such that for all yW we

have V V (y).

Proof. The former three properties are obvious. For [N4], if VS(x, r), then

we can take W = S(x,
2

r
), since S(y,

2

r
)V for all yW . }

Because properties [N1] – [N4] hold in plenty of examples, they are taken
as axioms in the “abstract notion” of topological structure, namely:
4.4. Definition. Let S Ø be an arbitrary set. Any function

 : SP (P (S)) ,

which attaches to each x S a system of neighborhoods of x , noted

(x) = V (x) ,

is called topology on S iff V (x) satisfies the above conditions [N1] – [N4]

at each x S. The forthcoming structure on S is called topology, and S,

endowed with this structure, is said to be a topological space; it is most
frequently noted as a pair (S, ).
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4.5. Examples of topological spaces:
(i) The Euclidean  (i.e. R or C) from above.

(ii) The Euclidean n , nN* , and generally any metric space.

(iii) Let (S,  ) be a totally ordered nonvoid set, which has the property:

x S  ba, S such that a < x < b ,

and let the intervals (a, b), [a, b), etc. be defined like in (R,  ). Then the

following notations make sense:
VE (x) = {VS : a, bS such that x(a, b) V};

V1 (x) = {VS : aS such that (a, x] V } ;

Vr (x) = {VS : bS such that [x, b) V };

V (x) = {VS : aS such that x(a ,  ) V };

V (x) = {VS : b S such that x( , b) V }.

Each of these families satisfies conditions [N1] – [N4], hence each one
can be considered system of neighborhoods. The corresponding topologies
are respectively called:
 Euclidean (or topology of open intervals) if (x) = VE (x) ;

 topology of half-intervals to the left if (x) = V1 (x) ;

 topology of half-intervals to the right if (x) = Vr (x) ;

 topology of unbounded intervals to the right if (x) = V (x) ;

 topology of unbounded intervals to the left if (x) = V (x) .

In particular, we may consider S = R, endowed with its natural order, or

S = R2 with its lexicographic order, etc.

(iv) Let (D,  ) be a directed set, and let  be an element subject to the
single condition D (in addition, the order  is frequently extended by

considering that  is the greatest element). We note D = D  { }, and we

claim that function  : D P (P ( D )), expressed by










xifDddVDV

DxifVxDV
x

}),,(}{:{

}:{
)(

represents a topology on D .
Such topologies on directed sets are called intrinsic, and they are tacitly

involved in the theory of convergence of generalized sequences (nets, in
the sense of definition I.1.15). In particular, N is a directed set, and we

may remark that the above neighborhoods of  are used to express the
convergence of a sequence.
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(v) On any nonvoid set S we may consider two “extreme” cases, namely:

 the discrete topology d (x) = {VS: xV }, and

 the rough (anti- discrete, or trivial) topology t (x) = {S} .

These topologies are extreme in the sense that d (x) is the greatest family
of neighborhoods, while t (x) is the smallest possible. We mention that one
sense of discreteness in classical analysis reduces to endow the space with
its discrete topology d .

From the notion of neighborhood, we may derive other terms, which
form the “vocabulary” of any topological study, as for example:
4.6. Definition. Point x is interior to a set A iff it has a neighborhood V
such that VA. The set of all interior points of A is called the interior of

A, and it is noted Å, A0 , or (A) . We say that A is open iff A = Å .
Point y is said to be adherent to a set A iff VA  holds for arbitrary

VV (y). The set of all adherent points of A forms the adherence (or the

closure) of A, which is noted A– , A , or (A). In the case when A= A , we
say that A is closed.

We say that z is an accumulation point of A iff A (V \ {z})  for all
VV (z). The set of all accumulation points of A is called derivative of A,

and it is noted A/ , or (A).
Point w is named frontier (or boundary) point of A iff both AV  ,

and {AV  for any VV (w). The set of all such points forms the

frontier of A, which is noted A~ , or A .
Constructing the interior, adherence, derivative, and the frontier of a set

is sometimes meant as the action of some topological operators, namely:
= interior,  = adherence,  = derivation, and  = frontier.

4.7. Proposition. Family G of all open sets in the topological space (S,)

has the following properties:
[G1]  , SG ;

[G2] A, BG  ABG ;

[G3] Ai G for all iI (arbitrary)  {Ai : iI }G .

Conversely, we can completely restore topology  in terms of G.
The proof is directly based on definitions, and therefore it is omitted, but

the inexperienced reader may take it as an exercise.
A dual proposition holds for the family of closed sets, which, instead of

[G2] and [G3], refers to finite unions and arbitrary intersections. A similar
study involves the topological operators, as for example:
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4.8. Proposition. The operator : P (S)  P (S) has the properties:

[I1]  (S) = S ;

[I2]  (A)  A , A P (S) ;

[I3]  ( (A)) =  (A) , A P (S) ;

[I4]  (AB) =  (A)   (B) ,  BA, P (S) .

Conversely, each , which satisfies [I1]-[I4], uniquely determines  .
The proof is direct, and will be omitted. The most sophisticated is [I3],

which is based on [N4]. We may similarly treat the adherence. The duality
open / closed, interior / adherence, etc. can be explained by the following:
4.9. Proposition. The following relations hold in any topological space:
(i) xA0

 x({A) – , and yB –
 y({B)0 ;

(ii) {[(A)] = [{(A)] , and {[(A)] = [{(A)] ;

(iii) A is open  {A is closed;

4.10. Derived topologies. a) Topological subspaces. Let (S, ) be a

topological space, and let T  be a subset of S. We say that T is a

topological subspace of S if each x 2T has the neighborhoods

T (x) = {U = V \T : V 2(x) }.

For example, the Euclidean R is a topological subspace of C.

b) Topological products. If (S1, 1) and (S2, 2) are topological spaces,

and T = S1 x S2 , then the product topology of T is defined by

T (x, y) = {W T : 9U 21(x), V 22(y) such that U x V W }.

This construction can be extended to more than two topological spaces. In
particular, C = R2 , and Rn , where n 2, are topological products.

c) Topological quotient. Let ~ be an equivalence on S, and let T = S/~ be

the set of equivalence classes. A topology  on S is said to be compatible

with ~ if (x) = (y) whenever x ~ y. If so, we can define the quotient
topology of T , which attaches to each class x^ the neighborhoods

T (x^ ) = {V ^ T : V 2(x) }.

Simple examples can be done in C = R2 , and Rn .
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§ I.4. Part 2. SCALAR PRODUCTS, NORMS AND METRICS

In this part we study those particular topological spaces, which occur in
the classical construction of a topology, based on some intrinsic structures
of these spaces. In particular, we shall explain the scheme

Scalar product  Norm  Metric Topology,
where  means “generates”. Of course, we are especially interested in
such a construction whenever we deal with linear spaces.

4.11. Definition. If L be a linear space over , then functional

< . , . > :LxL 

is called scalar product on L iff the following conditions hold:

[SP1] <x + y, z> = <x,z> + <y,z>, x, y, zL, ,  (linearity);

[SP2] <x, y> =  xy, , x, yL (skew symmetry; = conjugation);

[SP3] <x, x>  0 at any xL (positiveness);

[SP4] <x, x> = 0 ()  x = 0 (L) (non-degeneration).

The pair (L, < . , . >) is called scalar product space.

If  = R, the second condition becomes an ordinary symmetry, since the

bar stands for the complex conjugation. Condition [SP2] is implicitly
used in [SP3], where <x, x> R is essential.

4.12. Examples. If L = R, then obviously <x, y> = xy is a scalar product.

Similarly, if L = C, we take <, z> = ζ z . The cases L = R2 and L = R3

are well known from Geometry, where the scalar product of two vectors is
defined as “the product of their length by the cosine of the angle between
them”. The analytic expression of this scalar product in R3 is

<x, y> = x1 y1 + x2 y2 + x3 y3 ,
and it can be extended to n , n N*, by the formula

<x, y> = nn yxyxyx  ...2211 .

The finite dimensional space L = n , endowed with this scalar product,

or with other derived from it structures, is qualified as Euclidean.
A slight generalization of these products is obtained by putting some

weights α1 > 0,…, αn > 0 therein, namely

<x, y> = nnn yxyx   ...111 .
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The Euclidean scalar product is naturally extended to sequences in , if
appropriate conditions of convergence are assumed. The definition is

<x, y> = 


1n
nnn yx ,

for any pair of sequences x, yN, where sequence = (n) of strictly

positive terms represents the weight of the respective scalar product.
If we remark that the n-dimensional vectors are functions defined on a

finite set {1, 2, …, n}, and the sequences are functions defined on N, we

may extend the Euclidean scalar products from above to functions defined
on compact intervals ],[ ba R . More exactly, the scalar product of two

functions f, g :[a, b] , is defined by

<f, g> = 
b

a

dttgtft )()()( ,

where :[a, b]R*+ represents the weight function. Of course, adequate

conditions of integrability are assumed, e.g. , f, g C([a, b]), etc.
The following properties are frequently used in the calculus:

4.13. Proposition. If (L, < . , . >) is a scalar product space, then:

(i) <x, 0> = <0, x> = 0 for any xL ;

(ii) <x, y + z> = <x, y> + <x, z> for any x, y, zL ;

(iii) <x,  y> =  <x, y> for arbitrary x, yL and .

The proof is directly based on the definition.

4.14. The fundamental inequality. (Cauchy-Buniakowski-Schwarz) If
(L, < . , . >) is a scalar product space, then for all x, yL we have

| <x, y> |2  <x, x> <y, y> , (*)
with equality iff x and y are linearly dependent.

Proof. According to [SP2], for any  we have
T() = <x +  y, x +  y>  0 .

If y  0, then we replace  = –




yy

yx

,

,
in T. Otherwise, it reduces to the

obvious equality | <x, 0 > |2 = 0 = <x, x> 0 . For x = λy we obviously have

equality in (*) , i.e. |  <y, y> |2 =  <y, y>2 .
Conversely, if we suppose that (*) holds with equality for some x 0 y ,

then for 0 = –




xy

xx

,

,
it follows that T(0) = 0 . Consequently, according

to [SP4] , we have x + 0 y = 0 . }
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Now we can show that the scalar products generate norms:
4.15. Definition. Functional || · || : LR+ , where L is a linear space

over  , is called norm iff it satisfies the conditions:
[N1] || x || = 0 iff x = 0 (non degeneracy);
[N2] || x || = | | ||x|| for any x L and  (homogeneity);

[N3] || x + y ||  || x || + || y || for all x, y L (sub-additivity).

Correspondingly, the pair (L, || · ||) is named normed linear space.

4.16. Corollary. Any scalar product space (L, < . , . >) is normed by

|| x || =  xx, .

Proof. The functional ||·|| is well defined because of [SP3]. It is no
difficulty in reducing [N1] and [N2] to [SP4], [SP1] and [SP2]. Finally, [N3]
is a consequence of (*), because

|| x + y ||2 = <x + y, x + y> = <x, x> + 2Re <x, y> + <y, y> 
 || x ||2 + 2 | <x, y> | + || y ||2  (|| x || + || y ||)2.

The equality in [N3] holds iff the vectors are linearly dependent. }

4.17. Remarks. (i) There exist norms, which cannot be derived from
scalar products, i.e. following the above corollary. For example:
 The sup-norm, acting on the space CΓ ([a, b]) of all continuous

functions on the closed interval [a, b] R , defined by

|| f ||sup = sup {| f(t)| : t[a, b]}; and
 The L1 – norm, defined on the space L1

 ([a, b]) of equivalence classes
of absolutely integrable functions on [a, b] R , defined by

1L
f = 

b

a

dttf )( .

(ii) There is a simple test for establishing whether a given norm derives or
not from a scalar product, namely checking the formula

|| x + y ||2 + || x – y ||2 = 2(|| x ||2 + || y ||2).
If this equality is satisfied, and L is a complex linear space, then

<x, y> =
4
1 (|| x + y ||2 – || x – y ||2 + i || x + iy ||2 – i || x – iy ||2)

is a scalar product that generates || · || . For real linear spaces we have:

<x, y> =
4
1 (|| x + y ||2 – || x – y ||2) .

(iii) In any real scalar product space (L, < . , . >) , function

^: (L \{0}) x (L \{0})   ,0 R,

expressed by
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^ (x, y) = arc cos
yx

yx

.

, 
,

defines the measure of the angle between two non-null vectors yx, L.

In fact, ^ is well defined because of (*).

The notions of norm, angle, and orthogonality, introduced in the next
definition, represent the starting point of the Euclidean (metric) geometry
on any scalar product space (L, < . , . >), including Rn .

4.18. Definition. Two elements x, yL, where (L, < . , . >) is a scalar

product space, are said to be orthogonal iff <x, y> = 0. In this case we
note x  y , i.e. sign  stands for orthogonality as a binary relation on L.

More generally, a set of vectors S = {xL: iI}, where I is an arbitrary

family of indices, is called orthogonal system iff xi  xj whenever i j .

Two sets A, BL are considered orthogonal (to each other) iff x  y

holds for arbitrary xA and yB. In this case we note A  B .
The orthogonal complement of A is defined by

A = {yL: x  y for all xA }.

4.19. Proposition. Every orthogonal system of vectors is linearly
independent.
Proof. Let us consider a null linear combination of non-null vectors

C1 x1 + C2 x2 +…+ Cn xn = 0 .

To show that Ck = 0 for all k = n,1 , we multiply by xk , and we obtain

Ck
2

kx = 0, where 
2

kx 0 . }

An immediate consequence of this property establishes that every
maximal orthogonal system forms a base of L .

4.20. Proposition. (Pythagoras formula) If {x1, x2,…, xn} is an orthogonal
system, and x = x1 + x2 +…+ xn , then





n

k
kxx

1

22
.

Proof. In the development of <x, x> we replace <xi, xk> by 0 if i  k ,

and by
2

ix if i = k . }
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The next level of generality refers to metrics:
4.21. Definition. Let S be an arbitrary non-void set (generally non-linear).

A functional  : SxSR+ is called metric on S iff:

[M1]  ρ(x, y) = 0  x = y (non-degeneration);
[M2]  ρ(x, y) = ρ(y, x) for any x, y S (symmetry);

[M3]  ρ(x, y)   ρ(x, z) + ρ(z, y) for any x, y, zS (sub-additivity).

The pair (S, ) forms a metric space. The values of  are named distances.

If instead of [M1], we have only ρ(x, x) = 0 , then ρ is said to be a pseudo-
metric (briefly p-metric), and (S, ) is called pseudo-metric space.

Condition [M3] is frequently referred to as rule of triangles. Later we
will see that the (p-) metrics are directly used to construct topologies, and
this rule has an essential contribution to this construction.

4.22. Examples. 1. If S=L is a linear space, and || . || is a norm on it,

then (x, y) = ||x-y|| is a metric. In particular, if L= n, then its Euclidean

metric is obtained on this way from the Euclidean norm, namely:





n

k
kk yxyx

1

2
),( .

2. On non-linear spaces we cannot speak of norms, but it’s still possible to
define metrics, e.g. by restricting some metric of L (linear) to a non-linear

subset SL. Sometimes linear spaces are endowed with metrics that do

not derive from norms, as for example s , which consists of all sequences
in In fact, functional q defined for any sequence x = (xn) by

q(x) = 


 1 12

1

n n

n
n x

x
,

isn’t a norm (since q(x) |  | q(x) !), but (x, y) = q(x – y) is a metric.
3. Let S be an arbitrary non-void set, and let  : SxSR+ be defined by

(x, y) =








yxfi

yxif

1

0
.

Then (S, ρ) is a metric space, and even if S is a linear space,  cannot be

derived from a norm. Because  generates the discrete topology on S (see

the example I.4.5.v), it is usually named discrete metric.
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Now we show how p-metrics generate topologies, i.e. we describe the
intrinsic topology of a p-metric space. This is a very general construction,
but in principle it repeats what we know in R and C .

4.23. Theorem. Let (S, ) be a p-metric space, and let us note the open

ball (sphere) of center x and radius r > 0 by
S(x, r) = {yS: (x, y) < r}.

Then function  : SP (P (S)) , expressed at any x  S by

 (x) = {VS : r >0 such that S(x, r)  V},

is a topology on S , usually called metric topology.

   In addition, if ρ is a metric (i.e. (x, y) = 0  x = y), then (S, ) is

separated, i.e. distinct points have disjoint neighborhoods. We mention that
there are plenty of separation axioms, and this one is known as [T2]; see
later its role in the uniqueness of the limit.

Proof. We have to verify conditions [N1]-[N4] from definition I.4.1. In
particular we discuss [N4], since [N1]-[N3] are obvious. In fact, let V be a
neighborhood of x , and S(x, r) be a sphere contained in V. We claim that
the sphere W = S(x, r/2) fulfils [N4]. In fact, since for any yW, we have
S(y, r/2) V, we obtain V   (y).

In particular, let  be a metric, and let yx, S, x y. Because of [M1],

we have (x, y) = r > 0, hence S(x, r/3) and S(y, r/3) are samples of disjoint
neighborhoods, as asked by the condition of separation. }

4.24. Remarks. 1) We may conceive Mathematical Analysis as a two
levels theory: at a quantitative level it deals with numbers, vectors, and
metric measurements, but at a qualitative one it involves limits,
convergence, continuity, and other topological notions.
2) We frequently use the term Euclidean to qualify several things, namely:
- the natural topology of R, C, and more generally n ;

- the scalar product <x, y> = 


n

k
kk yx

1

in  n , n  N* ;

- the norm || x || =  xx, of the same n ;

- the metric ρ(x, y) = || x – y|| of n.
The common feature of all these situations, which justifies the use of the

same terminology, is reflected in the forthcoming topology. In other words,
by an Euclidean topological space we understand the n-dimensional linear
space  n , n N*, endowed with the Euclidean metric topology
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PROBLEMS § I.4.

1. Compare the following topologies of R: e = Euclidean, 0 = rough,

1 =discrete, l = to the left, and r = to the right, where
l(x) = {V R:  > 0 such that V  (x – , x]},

r(x) = {V R:  > 0 such that V  [x, x + )}.

Find and compare the corresponding families of open sets.
Hint. 0  e = inf {l , r} sup {l , r} = 1 ; l and r are not comparable.
The families of open sets are: G 0 = { , S} for 0 , G 1 = P (S) for 1 ,

and arbitrary unions of intervals of the form (x – , x + ), (x – , x], and
respectively [x, x + ), for the last ones.

2. Show that C is homeomorphic to the Riemannian sphere (i.e. there is a
1:1 correspondence between the two sets, which carries neighborhoods

from one set onto neighborhoods in the other space. Study whether R has a
homeomorphic copy on this sphere.
Hint. The small circular neighborhoods of points (N) of the sphere are
stereographically projected into small discs in C. The pole N of the sphere

corresponds to  C , and its circular neighborhoods correspond to sets of

the form {S(0, r). A similar representation of R is impossible since the two

points  would correspond to the same N.

3. Let  be the product order on Rn , and let function : Rn P (P (Rn))

be defined by:
(x) = {VRn :  a, b Rn such that x(a, b) V}.

Show that  is a topology on Rn (called product order topology), which is

equivalent to the product topology of Rn. Compare this topology to the

Euclidean one.

Hint. Because the order intervals have the form (a, b) = X{(ak, bk): k = n,1 },

it follows that V (x) iff it is a neighborhood of x relative to the
Euclidean topology.

4. Analyze the following sets from a topological point of view:
A = {n – 1 : nN*} (1, 2] in R ;

B = {t + i sin t – 1 : t (0, 2/π)} in C ;

C = {(z, t) C x R : | z |(1, 2], arg z [1, 2), tQ [1, 2]}.

Hint. Find the interior, adherent, accumulation, and boundary points, and
establish which of the given sets are open, closed, etc.
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5. Show that a topological space (S, ) is separated, i.e.

[T2]  yx, S, yx  , U (x), V (y) such that U \V =  ,

iff the diagonal  = {(x, x): xS}, which represents the equality on S, is

closed relative to the product topology of S x S.

Hint. Replace the assertion “ is closed” by “x y iff (x, y)  ”, and

similarly, “(S, ) is separated” by

“   )(U)()(U),( VthatsuchyVandxyx VV ”,

where obviously, x y holds if and only if (x, y)  .

6. Let us note A =  {An : nN}, where An = {1/2n, 2/2n ,…, (2n-1)/2n}.

Show that A = [0, 1], i.e. A is dense in [0, 1], and interpret this fact in terms

of binary approximation of x [0, 1] .
Hint. Divide [0, 1] in 2, 4, …, 2n equal parts, and put either digit 0, or 1,
according to the first or the second subinterval to which x belongs.

7. Let S be an arbitrary nonvoid set,  : S!R be 1:1 (i.e. injective), and

 : A x A !R+ be a metric on A =  (S) R. Show that:

a) d : SxS!R+ , of values d (x, y) =  ((x), (y)), is a metric.

b) If S = R, (x) =
x

x
1

, and  (x, y) = yx  , then  and d are two

topologically equivalent metrics. Give an example when it is not so.
c) If card S  , then for every metric d on S, there exist  and  such

that d = d . Is such a representation of d always possible ?
Hint. a) Verify the conditions in the definition I.4.21. b) Each Euclidean
sphere contains some sphere relative to , and conversely. Am example is

 (x) =








,)(

\

Q

QR

xifxn

xifx



where  is a 1:1 correspondence of Q with N.

c) An injective function  exists iff card S  = card R.

8. Show that in any linear normed space (L, || . ||), the adherence S op of

the open unit sphere centered at 0, Sop = {xL: ||x|| < 1}, equals the closed

unit sphere Scl = {xL: ||x||  1}. What happens in general metric spaces?
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Hint. Any point x from the boundary of Scl , is adherent to the radius
{x: [0,1)} Sop ,

hence Scl  S op. Conversely, if x is adherent to Sop , we take y Sop , where
||y|| < 1, and ||x||  ||x – y|| + ||y||. This property is not generally valid in
metric spaces (S, ), e.g. S is the metric subspace of the Euclidean R2 ,

S = {(x, y) R2 : x2 + y2 = 1 or y = 0}.

9. Let f, g : [– 2, 1] x [0, 3]R be functions of values f(x, y) = x2 + y2,

and g(x, y) = 2 x y. Evaluate their sup-norms and the distance (f, g).
Hint. Because functions f and g are bounded, it follows that the sup-norms
do exist. By connecting these functions to the notions of Euclidean distance
and area, we obtain the values

||f|| = sup{|f(x, y)|: (x, y) [– 2, 1] x [0, 3]} = f (– 2, 3), and
||g|| = – g(– 2, 3) .

Since (f – g)(x, y) = (x – y)2, we find (f, g) = ||f – g|| = 25.

10. Let S,  ,  and d be defined as in the problem 7 b, and let  be a

prolongation of  to R = R   , where (  ) = – 1 and (  ) = 1.

Show that d is a bounded metric on S, and find out the form of the open

and closed spheres of center x (including x =  ) and radius r.

Hint. S(+ , r) = ( 


,
1

r

r
] for any r(0, 1), etc.

11. Let (L, || . || ) be a normed linear space, and let F be a linear finite

dimensional subspace of L. Show that for any xL\F there is x*F

(called best approximation element) such that
|| x – x*|| = min {||x – y||: yF } .

Find the best approximation of x = exp in the linear subspace F of all

polynomials of degree 2, where L = CR([0, 1]) is normed by

2L
f = 

1

0

2 )( dttf .

Hint. Because || . || derives from a scalar product, then
x* = PrF(x),

i.e. (x – x*)F, which furnishes x*. In particular, we have to deduce the

values of a, b, and c such that (et – at2 – bt – c) {1, t, t2}.
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CHAPTER II. COVERGENCE

§ II.1. NETS

The nets are a very important tool of the mathematical analysis,
especially when the sets where they are considered in, are endowed with a
topological structure. Convergence is the main topic in this framework,
which is developed in terms of limit points, accumulation points, and other
topological notions. There exist particular properties of nets (e.g.
boundedness, the property of being fundamental, etc.), which are studied in
metric spaces. More particularly, other properties need a supplementary
structure; for example, we can speak of monotony only if an order relation
already exists, and we can operate with nets only if the space is endowed
with an algebraic structure, etc.

From a topological point of view, the notion of net is the most natural
extension of that of sequence. The study of the nets helps in understanding
the principles of the convergence theory, and more than this, it is effective
in the measure and integration theory. Therefore, we devote the first part of
this section to general aspects involving nets.

§ II.1. Part 1. GENERAL PROPERTIES OF NETS.

1.1. Definition. Let (S, ) be a topological space, (D,  ) be a directed set,

and f :D S be a net (generalized sequence) in S. We say that f is

convergent to l S iff for any V(l) there exists dD such that f (a)V

whenever ad.. In this case, we say that l is a limit of the net f, and we note
l = f

D
lim = )(lim df

d 
,

f(d)  l, lLim f, etc.
where sign Lim f stands for the set of all limits. If Lim f  we say that f
is a convergent net; otherwise, if Lim f =  , f is said to be divergent.

In particular, if D = N, we say that sequence f :N  S is convergent to

l S, and we note n
n

xl


 lim , lxn  , etc. (read l is the limit of (xn), or

xn tends to l, etc.), iff for any neighborhood V(l) there exists n(V)N

such that n  n(V)  xnV. The convergence and divergence are similarly
defined for sequences, meaning Lim f  , respectively Lim f =  .
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We mention that, generally speaking, the limit points are not unique.
More exactly, the sets Lim f are singletons exactly in separated (i.e. [T2])
spaces. In addition, to each net we may attach other types of points, e.g.:
1.2. Definition. Let (S, ) be a topological space, (D,  ) be a directed set,

and f : D S be a net in S. We say that xS is an accumulation point of

the net f iff the following condition holds:
V  (x) a D b D, b > a, such that f(b) V.

The set of all accumulation points of a net f is noted Acc f .
In particular, the same notion makes sense for sequences.

1.3. Examples. a) The construction of a definite Riemannian integral is
mainly based on convergent nets. To justify this assertion, let us remind
this construction. We start with a bounded function f : [a, b] !R, and we

consider partitions of [a, b], which are finite sets of subintervals
 = { ],[ 1 kk xx  : k = 1, 2, …, n; a = x0 < x1 <…< xn = b}.

The norm of  is defined by  = max {xk – xk-1 : ],[ 1 kk xx  }.

Then, for each partition, we choose systems of intermediate points

ξ () = { ξ k  [xk-1 , xk]  : k= n,1 } .

Finally, we define the integral sums attached to  and by

f (,  = 



n

k
kkk xxf

1
1)()( .

We say that f is integrable on [a, b] iff for all sequences n of partitions,
the corresponding sequences f (n, n of integral sums have a common
limit when n not depending on the systems on intermediate points.

By definition, this limit represents the Riemannian integral of f on [a, b],
which is usually noted

I =



n

b
a

dxxf lim)( f (n, n

It is easy to see that instead of this construction, which involves a lot of
sequences, we better say that the net f : D R is convergent to I, where

D is the directed set from the example I.1.8.(iii) 4.
b) Let sequence f : NC be defined by f(n) = in . It is easy to see that f is

divergent, but it has four accumulation points, namely + 1, and + i . There
are also four constant subsequences, i.e. (i4p), (i4p+1), (i4p+2), and (i4p+3),
which obviously are convergent to these points. In this example we may
remark that the set of values, that is {f(n): nN} = {1, i, –1, – i} has no

accumulation point, hence we have generally to distinguish between
accumulation point of a sequence (net) and accumulation point of a set (see
also the next example).
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c) Let D = NxN* be directed by the relation

(m, n)  (p, q)  m  p ,

and let f :DR2 be defined by f(m, n) = (m,
n

1
). If we endow R2 with its

Euclidean topology, then any point of the form (m, 0) is an accumulation
point of the set f(D), while Acc f =  .
d) The sequence g: NR, expressed by g(n) = exp((-1)n n), has a single

accumulation point, namely Acc g = {0}, but 0Lim g. More exactly, the set
Lim g is void, i.e. g is a divergent sequence.
e) The sequence h: N  , of values h(n) = (-1)n n, is convergent if Γ = C,

but it is divergent if Γ = R, when Acc h = {+}. Thus, we may conclude

that the form of the sets Lim and Acc essentially depends on the space in
which the net is considered.

The study of accumulation points naturally involves the subnets and
their limit points:
1.4. Theorem. In the terms of the above definitions we have:
(i) Any limit of a net f is an accumulation point of f;
(ii) If the space (X, τ) is separated (i.e. [T2]), and the net f has at least two

different accumulation points, then f is divergent;
(iii) The element x is an accumulation point of the net f iff it is the limit of

some subnet of f.
(iv) Every accumulation point of a subnet of f is an accumulation point of

the initial net f.
(v) The set Acc f is always closed.
Proof. (i) If Vτ(x) determines some dD such that f(b) V for all
dbD , then f(b) V holds for some ba , where a is arbitrary in the
directed set D .Consequently Lim f Acc f.
(ii) Let us suppose that {x, x’}  Acc f, and still (by r.a.a.) Lim f = { },
where x x’, but possibly = x’, say. As for sure it remains   x  Acc f.

Using the fact that (X, τ) is [T2], let us choose U τ( ) and V τ(x) such
that UV = Ø. Because = lim f , there exists aD such that f(b)  U for
all ba, so f(b) V is not possible for such b’s any more, contrarily to the
supposition that x Acc f.
(iii) Let (E,<<) be another directed set, h: ED be a Kelley function (see
condition [s] in definition I.1.15), and let the subnet g=fh be convergent
to xX . If V τ(x) and aD are fixed, then there exist e’ , e” E such that
g(e) V holds for all e>>e’, and h(e)a whenever e>>e”. Consequently,
if e exceeds both e’ and e” , then f(b) V , for b=h(e)a, that is xAcc f.

Conversely, if xAcc f , then we may consider the set
E = {(V, f(b)) τ(x) x X : f(b) V} ,

which is directed by << , in the sense that
(V, f(b))<<(V’, f(b’)) V’ V and bb’.
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Then the function h: ED, expressed by h((V, f(b)))= b, satisfies the
condition [s], hence g=fh is a subnet of f. We claim that g converges to x.
In fact, if we fix aD, then for any Vτ(x) we find some (V, f(b)) E
(where ba is not essential any more) such that (V, f(b))<<(V’, f(b’))
implies g((V’, f(b’))) V since g((V’, f(b’))) = f(b’) V’ V.
(iv) Let E, h, g be defined as in the above proof of (iii) , and let xAcc g .To
show that xAcc f , we choose Vτ(x) and aD, hence, using property [s]
of h, we are led to some eE, such that h(e’)a whenever e’>>e. Because
xAcc g, there exists some particular e’>>e such that g(e’) V, hence there
exists b=h(e’) a in D such that f(b) V.

(v) We have to show that fAcc Acc f, because the contrary is always

true. In fact, if x fAcc , Vτ(x), and aD, we may take W as in [N4],

hence Vτ(y) whenever yW. Because yAcc f, we deduce f(b) WV for
some ba. }

Some properties of the closed sets and operator “adherence” can be
expressed in terms of convergent nets, as for example:
1.5. Theorem. If A is a subset of a topological space (S, τ), then:

(i) x A iff there exists a net f : DA, convergent to x;
(ii) A is closed iff any convergent net f : DA has the limit in A;

(iii) A = S (when A is said to be dense in S) iff every xS is the limit

of a convergent net f : D A.
Proof. (i) If x A , then for any V  τ (x) there exists some xVVA, and
consequently we may define the directed set D ={(V, xV): V τ (x)} and the
net f: DA of values f(V, xV) = xV. Obviously, f  x (see also problem 1).

Conversely, if a net f : DA (in particular a sequence, for D = N)

converges to x , then any neighborhood V  τ (x) contains those elements

of A which are the terms of f in V, i.e. x A .
(ii) If A is closed, and f : DA is convergent to x, then according to (i),

x A = A; in particular D = N is possible. Conversely, using (i), any x A

is the limit of a net in A . By hypothesis xA, hence A = A.
(iii) Characterization (i), of the adherence, should be applied to arbitrary
points of S. }

1.6. Theorem. Let (xn) be a sequence in a topological space (S, τ). If none

of its subsequences is convergent, then all the sets Gk= S \ {xk, xk+1, …},

where kN, are open.

By reductio ad absurdum, the proof reduces to the previous theorem, (i).
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§ II.1. Part 2. SEQUENCES IN METRIC SPACES

1.7. Remarks. a) The study of generalized sequences (nets) is redundant in

metric spaces since the base B(x) = {S(x,
n
1 ): nN*} of neighborhoods is a

countable set at each point xS. More exactly, each property that involves

convergence of nets remains valid in metric spaces if we replace the nets by
sequences.
b) The notion of fundamental sequence of numbers is essentially based on
the possibility of comparing the neighborhoods of different points in Q, R

or C. Generally speaking, this comparison cannot be done in arbitrary

topological spaces because of the lack of a size of neighborhoods. Such a
size is still available in metric spaces, where the radii of spherical
neighborhoods naturally represent it.
c) The property of boundedness is also meaningless in a general topological
space, but makes sense in the metric ones.

To build a more concrete image about the convergence in metric
spaces we will adapt the general definitions to this framework.
1.8. Proposition. Let (S, ρ) be a metric space. A sequence (xn) in S is

convergent iff there exists some l  S such that

 )(0 0  n N,   ),(0 lxnnsuch that n

i.e. outside of any sphere centered al l there is a finite number of terms of
the sequence.
Proof.  If τ represents the topology generated by ρ, it follows that V τ(x)
iff VS(l, ) for some >0, so it remains to reformulate the definitions. }

1.9. Definition. Let (S ,ρ) be a metric space. A sequence (xn) in S is said

to be fundamental (or Cauchy’s) iff for any >0 there exists n0()N such

that p, q  n0() implies ρ(xp, xq ) < . We say that (S, ρ) is complete iff

“fundamental  convergent” holds for any sequence in S; in particular,

the complete normed spaces are called Banach spaces, while the complete
scalar product spaces are named Hilbert spaces.

A set A S is said to be bounded iff it is contained in some sphere,

i.e. there exist a S and r > 0 such that A  S(a, r). We say that (xn) is a

bounded sequence in S iff the set {xn} of all values is bounded.
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1.10. Proposition. A necessary and sufficient condition for a set A S to

be bounded is that for any a’ S to exists r’ >0 such that A  S(a’, r’).

Proof. The sufficiency is obvious. Conversely, if A is bounded and a’ S

is chosen, then for any xA we have
ρ(x, a’)  ρ(x, a) + ρ(a, a’)  r + ρ(a, a’),

so that we may take r’ = r +  ρ(a, a’). }

1.11. Theorem. In every metric space (S, ρ) we have:

a) The limit of any convergent sequence is unique;
b) Any convergent sequence is fundamental;
c) Any fundamental sequence is bounded.
Proof. a) The property is essentially based on the fact that any metric space
is separated, i.e. T2 .
b) If n

n
x


 lim , then we may compare ρ(xn, xm)  ρ(xn,  ) + ρ( , xm).

c) If (xn) is fundamental, then for = 1 there exists a rank νN such that

n>ν implies ρ(xn, xν) < 1, i.e. the set {xν+1, xν+2,…} is bounded. On the other
side the finite set {x0, x1, …, xν} is bounded too. }

Beside the general properties involving the accumulation points and
subsequences, in metric spaces we mention the following:
1.12. Theorem. If (S, ρ) is a metric space , and f : N S is a sequence of

terms f(n) = xn, nN, then:

a) x S is an accumulation point of the sequence f iff

  )(0 x,xρsuch thatn nN ;

b) If (xn) is fundamental and has a convergent subsequence, say 
knx ,

then xn  too;
c) (f (N))’  Acc f , i.e. every accumulation point of the set {xn}, of values,

is an accumulation point of the sequence.
Proof. a) We may replace V = S(x, ) and D = N in the definition of an

accumulation point of f.
b) ρ(xn,  ) 0 because the distances in the greater sum

ρ(xn,  )   ρ(xn,
knx ) + ρ(

knx ,  )

are tending to 0 too.
c) If x(f (N))’, then for any kN we find some

knx in f (N) such that

knx S(x,
k
1 ). Because the order nknk+1 can be easily assured, function

k
knx represents a subsequence of f . }
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By the following theorems we show how useful is the property of
completeness in scalar product, normed, and metric spaces. In particular, in
the proof of the next theorem we see the role of completeness when we
need to decompose Hilbert spaces into orthogonal subspaces:
1.13. Theorem. If (L, < . , . >) is a Hilbert space, then any closed linear

subspace S has an orthogonal complement, i.e. S S? = L .

Proof. We have to show that for any x L there exist u S and v S?,

such that x = u + v. In fact, if xS, we take x = u, and v = 0. Otherwise,

let  = inf {|| x – y ||: yS}
.not

 d(x, S) be the distance of x to S, and let (yn)

be a sequence in S, which allows the representation  = n
n

yx 


lim .

Applying the Beppo-Levi’s inequality to the terms of this sequence, namely

2222
  mnmn yxyxyy ,

it follows that (yn) is a fundamental sequence (see [RC], etc., and some
geometric interpretations). Since L is complete, and S is closed, there

exists u = n
n

y


lim , uS. Consequently,  = ux  , i.e. the distance  is

reached at u. It remains to show that v = x – u S?, i.e. <v, y> = 0 for any

y S \ {0}. In fact, according to the construction of u, we have

|| x – (u + λy) ||2 = <v – λy, v – λy >  || x – u ||2 = <v, v>

for arbitrary λΓ. In particular, for λ=




yy

yv

,

,
, we obtain 0

,

,
2







yy

yv
,

which obviously implies <v, y> = 0.
Because S S? = {0}, this decomposition of x is unique. }

The next theorem is considered a geometric form of the fix-point principle
(see below), and represents an extension of the Cantor’s theorem I.2.17.
1.14. Theorem. Let (L, || . ||) be a Banach space, and let, for each nN,

Scl (xn, rn) = {x L : nn rxx  }

denote a closed sphere in L. If

i) the resulting sequence of spheres is decreasing, i.e.
Scl (x1, r1)  Scl (x2, r2) … Scl (xn, rn) …

ii) rn0,
then there exists a unique x*

L such that  {Scl (xn, rn): nN*} = {x*}.
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Proof. It is easy to see that the sequence (xn) is fundamental in L, which is

complete, hence there exists x* = lim xn , and x*
 clS (xn, rn) for all nN*.

Because each closed sphere is a closed set in normed spaces (see problem

I.4.8), i.e. clS (xn, rn) = Scl (xn, rn), we obtain x*
 Scl (xn, rn) for all nN* .

Consequently, x*
  {Scl (xn, rn): nN*} .

If x** would be another point in the above intersection, then
|| x** – x* ||  || x** – xn || + || x* – xn ||0,

hence x* = x** . }

Similar results hold in complete metric spaces, i.e. linearity is not
essential. The practical efficiency of these properties can be improved by
thinking the transition from one sphere to the other as the action of a
function. The specific terms are introduced by the following:
1.15. Definition. We say that function f : SS, where (S, ρ) is a metric 

space, is a contraction iff there exists a real number c[0,1), called
contraction factor, such that the inequality ρ(f(x), f(y))  c ρ(x, y) holds at
arbitrary x, y  S. An element x*

 S is called fix point of f iff f (x* ) = x*.

1.16. Theorem. If (S, ρ) is a complete metric space, and  f : SS is a

contraction, then f has an unique fix point.
Proof. Let us choose some x0  S. Generally speaking, x0  f(x0), but we

may consider it like zero order approximation of x*. The higher order
approximations of x* are recurrently defined by xn+1 = f(xn) for all nN.

We claim that the sequence (xn), of so-called successive approximations, is
fundamental. In fact, if we note ρ(x0, x1) = δ, then, by induction, for any
nN  we obtain ρ(xn, xn+1)  cn δ. Thus, for any nN and p1, we have:

ρ(xn, xn+ p)  ρ(xn, xn+1) +…+ ρ(xn + p – 1, xn + p)  cn δ +…+ cn + p – 1 δ =

= cn δ n
p

c
cc

c








11

1 
.

The case δ=0 (or c=0) is trivial since it corresponds to constant sequences
of approximations. Otherwise, since lim cn = 0, for arbitrary > 0 there
exists n0()N such that ρ(xn, xn+p) whenever n n0() and pN*, hence

(xn) is fundamental. Because (S, ρ) is complete, there exists  x* = n
n

x


lim ,

which turns out to be the searched fix point. In fact, since
(x*, f (x* ))  (x*, xn) + (xn , f (x* )) = (x*, xn) + (f (xn-1) , f (x* )) 

(x*, xn) + c (xn-1 , x* ) !0,

we deduce that (x*, f (x* )) = 0, hence f (x* ) = x* .
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Even if the above construction of x* starts with an arbitrary x0 , the
fix point is unique in the most general sense (i.e. the same for any
approximation of order zero, and for any other method, possibly different
from that of successive approximations). If x** would be a second fix point
of f , different from x*, then

0 < ρ(x*, x** ) = ρ(f (x* ), f (x** ))  c ρ(x*, x** )
would contradict the hypothesis c < 1. }

1.17. Remark. The interest in finding fix point theorems is justified by the
interpretation of the fix points as solutions of various equations. Applied to
particular metric spaces, especially to function spaces, the method of
successive approximations is useful in solving algebraic equations, as well
as more complicated problems like systems of differential, integral or even
operatorial equations (see [RI], [RC], [YK], etc.). The theoretical results
are essential finding approximate solutions by digital evaluation within the
desired error. In particular, this theory represents the mathematical kernel
of the computer programs for solving equations. This explains why so
many types of fix point theorems have been investigated, and the interest is
still increasing, especially in more general than metric spaces, with the aim
of developing particular techniques of approximation.

To illustrate how the method of successive approximations works to
solve an equation, let us consider the following simple case:
1.18. Example. Evaluate the real root of the equation

x3 + 4x – 1 = 0
with an error less than 10 – 4 .

The real root of this equation belongs to S = [0,1], and it can be

considered as a fix point of f : S S , where

f(x) = (x2 + 4) – 1 .
In addition, according to Lagrange’s theorem, for any xy in S,

ρ(f(x), f(y)) = | f(x) – f(y) | = | f /(ξ) | | x – y |= | f / (ξ) | ρ(x, y),
where ξ (x, y)S . Because

| f /(x) |= | -2x |(x2 + 4) – 2


8

1

at any x S, it follows that f is a contraction of factor c = 1/8. Starting, in

particular, with x0 = 0, we obtain   (x0 , x1) = ¼, hence for n  4 we

have the error less than

4108
7

2

1
 


nnc

c



Consequently, the searched approximation is x4.
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Because the complete metric spaces have a lot of convenient properties,
we have to analyze some of the most useful examples.

The complete metric space R. So far, we have seen that R is complete in

order. This fact is a consequence of the Dedekind’s construction (based on
cuts, compare to Theorem I.2.12), and represents one of the conditions in
the axiomatic definition I.2.14. In the following, we will show that R is a

complete metric space, relative to its Euclidean metric. This result will be a
consequence of some properties of R, already discussed in § I.2.

The following theorem is based on Cantor’s theorem:
1.19. Theorem. (Cesàro-Weierstrass) Every bounded sequence of real
numbers contains a convergent subsequence.
Proof. Since (xn) is bounded, let a, bR such that a  xn  b for all nN.

If c = (a+b)/2, then either [a, c] or [c, b] will contain infinitely many terms
of the sequence. Let [a1, b1] stand for that interval that contains infinitely
many terms. Dividing it in halves, we similarly obtain [a2, b2] [a1, b1], and
so on. The resulting sequence of intervals obviously satisfies the conditions
in the Cantor’s theorem (see I.2.17), with α = β. The needed subsequence is
obtained by choosing a term of the initial sequence in [ak, bk] in the
increasing order of indices. }

1.20. Corollary. For any infinite and bounded set AR there is at least one

accumulation point (α is an accumulation point of A iff each of its
neighborhoods contains points of A, different from α).
Proof. We repeat the reason from the above theorem by considering A
instead of {xk}. }

1.21. Remark. There are two aspects, which concur for a sequence to be
convergent, namely the relative position of the terms, and some “richness”
of the space to provide enough limit points. An example in which these
aspects can be easily distinguished is the sequence of rational

approximations of 2 , which looks like a convergent sequence, but in Q it

is not so because 2 Q. The notion of “fundamental sequence” is exactly

conceived to “describe the convergence without using the limit points”.
As a particular case of the definition 1.9. from above, we say that the

sequence (xn) in R is fundamental (or Cauchy), relative to the Euclidean

metric, if for every > 0 there exists a rank n0()N, such that

n, m > n0()  | xn – xm | <  .
According to the same definition, showing that R is complete means to

prove that each fundamental sequence in R is convergent, i.e. R contains

“enough” elements, which can play the role of limit points.
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The following properties of the sequences in R represent immediate and

simple consequences of the theorems 1.11. and 1.12. from above, in the
particular case S = R, and (x, y) = jx – yj.

1.22. Proposition. In the metric space R, the following implications hold:

a) Every convergent sequence is fundamental;
b) Every fundamental sequence is bounded;
c) If a fundamental sequence (xn) contains a convergent subsequence (

knx )

and 
knx , then also xn  .

The reader is advised to produce a particular proof in R.

Now we can formulate and prove the main result:
1.23. Theorem. Every fundamental sequence in R is convergent (or, in an

equivalent formulation, R is complete relative to its Euclidean metric).

Proof. According to the above property b), (xn) is bounded, so using the
above Cesaró-Weierstrass theorem 1.19., we deduce the existence of a
convergent subsequence. Being fundamental, the sequence itself has to be
convergent to the same limit. }

The complete metric space Rp. Considering Rp endowed with its usual

Euclidean metric, many general properties from metric spaces will remain
valid for sequences in Rp. In particular, Rp is another remarkable example

of complete metric space. To prove it, we have first to specify some terms
and connections with sequences in R.

Let a sequence of points in Rp, f : NRp, be defined by f(n) = xn, nN,

where xn = (xn
1, xn

2,…, xn
p). For each k = 1, 2, …, p, function f has a

component function fk : NR, defined by fk(n) = xn
k (the p sequences of

real numbers f1, f2,…, fp are called component sequences of the sequence f ).
The terms convergent, fundamental and bounded refer to the Euclidean

structure of Rp . However, the properties involving the order of R cannot be

carried to Rp, hence the Euclidean metric has greater importance in Rp.

The following theorem establishes the fact that the study of sequences in
Rp, p > 1 can be reduced to a similar study of sequences in R.

1.24. Theorem. If f is a sequence in Rp, of components f1, f2, …, fp , then:

a) Sequence f is convergent and has the limit x = (x1, x2, …, xp) iff the

sequences f1, f2, …, fp are convergent and xk = k
n

n
x


lim , k = 1, 2, …, p.

b) Sequence f is fundamental iff all its components are fundamental
c) f is bounded if and only if all the component sequences are bounded.
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Proof. a) Let us remark that the following double inequality takes place:














p

k

kk
n

p

k

kk
n

kk
n xxxxxx

1

2

1

1

2)( .

If the sequence f is convergent to x , then for every > 0, there exists a rank
n0()N such that d(xn, x) <  holds for every nn0(), where d is the

Euclidean distance. Then, from the first inequality, it results that if nn0(),

then| xn
k – xk | < . Consequently, xk = k

n
n

x


lim , for every k = 1, 2,…, p, i.e.

all the component sequences are convergent.
Conversely, let us suppose that each sequence fk converges to xk ,

where k = 1, 2,…, p, and let  > 0 be given. For every  /p > 0, there exists
nk()N such as for every nN, n  nk() we have | xn

k – xk | < /p. If we

note x = (x1, x2, …, xp) and n0() = max {n1(), n2(),…, np()}, then

d(xn, x) = 
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1
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p


= 

holds for all nn0(). Consequently, f is convergent and it has the limit x.
Points b) and c) of the theorem can be proved in the same way. }

1.25. Applications. According to point a) of this theorem, the limit of a
convergent sequence from Rp can be calculated “on components”. For

example, the sequence   
*2

)1(,, 1
2
11

N
 

n

n
nn

n

n
converges to (0, 1, e) in R3.

Because the algebraic operations of addition and scalar multiplication are
realized on components too, we may extend these operations to sequences.
In addition, if f, g are two convergent sequences in Rp, f(n)=xn, g(n)=yn,

nN, then f+g is convergent and
n

lim (xn + yn) =
n

lim xn +
n

lim yn, and if

αR, then the sequence αf is convergent and
n

lim (α xn) = α
n

lim xn.

Using Theorem 1.24, we can prove the completeness theorem for Rp :

1.26. Theorem. Sequence f in Rp is convergent if and only if it is Cauchy,

i.e. Rp is complete relative to its Euclidean metric.

Proof. The sequence f is convergent if and only if all his components are
convergent (from Theorem 1.24 a)). Because its components are sequences
of real numbers, and R is complete, the component sequences are

convergent if and only if they are Cauchy sequences. Applying point b) this
is equivalent to saying that f is a Cauchy sequence. So, f is convergent if
and only if it is Cauchy, i.e. Rp is a complete metric space. }
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The complete metric space C. We consider now the complex plane C,

endowed with the Euclidean metric d(z1, z2) = | z1 – z2 |, z1, z2 C. To give a

sequence {zn}nN in C means to precise two sequences of real numbers,

namely {xn}nN , {yn}nN , where zn = xn + i yn . Because the Euclidean

metrics on C and R2 coincide, i.e.

dC(z1, z2) = | z1 – z2 | = 2
21

2
21 )()( yyxx  = 2Rd ((x1, y1), (x2, y2)),

it follows that we may treat C as a particular case in the theorems 1.24. and

1.26. from above. Consequently, the sequence {zn}nN is convergent in C

(respectively Cauchy, or bounded) iff the real sequences {xn}nN , {yn}nN

have the same property. In particular, C is a complete metric space.

The complete metric space mA . Let AR be an arbitrary set and let mA be

the metric space of all bounded real functions defined on A, endowed with
the uniform distance d(f, g) = sup {| f(x) – g(x)|; x A}. We claim that:
1.27. Theorem. mA is a complete metric space.
Proof. Let {fn}nN be a Cauchy sequence in mA. Because

| fn(x) – fm(x) |  d(fn, fm)
holds at each x A, it follows that {fn(x)}nN are Cauchy sequences of real

numbers at each x A. Since R is complete, these sequences converge to a

well-determined real number, depending on x, which we note f(x). In this
way we define a function f : AR , called punctual limit of {fn}nN . We

have to prove that {fn}nN converges to f in the sense of d , and f mA.

Let us take  >0. Because {fn}nN is a Cauchy sequence, for /4 > 0 there

exists n0()N, such that for every n, m  n0() we have d(fn, fm) < /4 , i.e.

| fn(x) – fm(x) | < /4 holds at every x A. On the other hand, because at
every xA we have f(x) =

m
lim fm(x), there exists m0(, x)N such that

| fm(x) – f(x)| < /4
holds for all m m0(, x).

Now, let n n0() and x A be arbitrary, but fixed. If mN satisfies both

mn0() and m  m0(, x), then:
| fn(x) – f(x) |  | fn(x) – fm(x)| + | fm(x) – f(x)| < /4+ /4 = /2,

and
|f(x)|  |f(x) – nf (x)| + | nf (x)| < /2 + | nf (x)|.

Since nf  mA , it follows that fmA. In addition,
Ax

sup |fn(x) – f(x)| /2

implies d(fn, f )  /2 < , which means that {fn}nN is convergent in the

metric space mA. To conclude, mA is a complete metric space. }
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PROBLEMS § II.1

1. In the topological space (S, ) we choose z0 S, and we define the set

)}(:),{( 00
zVzzVDz  ,

where D is directed by (V, z)  (U, ) meaning U V. Show that the g.s.
f : D !S, of terms f ((V, z)) = z, is convergent to z0 . Illustrate this fact by

drawing two copies of S = C .

Hint. According to the definition of convergence, for every )( 0zV  there

is
0

),( zDzV  such that for (V, z)  (U, ) we have f ((U, ))V (see also

the examples I.1.8(iii)3, and I.1.16b).

2. Let (X, ) and (Y, ) be topological spaces, and let S = X x Y be

endowed with the product topology . The canonical projections are noted
p: S!X and q: S!Y, where p(x, y) = x, and q(x, y) = y. Show that a

g.s. f : D !S is convergent to (x0, y0) iff 0xfp  and 0yfq  .

Hint. Use the form of the neighborhoods in the product topology  (see the
derived topology in I.4.10.b), and apply the definition of the limit.

3. Let f : D !R be a g.s. of real numbers, where ),( D is an arbitrary set,

directed by  . Show that if
1. f is increasing (relative to  on D and < on R ), and

2. f(D) has an upper bound (in R),

then f is a convergent sequence.
Hint. According to the Cantor’s axiom (see definition I.2.14), there exists
the exact upper bound sup f(D) = x0 R. It remains to show that 0xf  .

4. Let (D,  ) be a directed set, and let E be a nonvoid part of D. We say
that E is co-final in D iff

Da Eb such that ba  .
Show that in this case the restriction

E
f is a subnet of the g.s. f :D!S.

Can E consist of prime numbers if we suppose D = N ?

Hint. The embedding h : E D, defined by h(e) = e, satisfies the Kelley’s
condition [s] in the definition I.1.15. Consequently,

E
f = hf  is a subnet

of f. The set of primes is infinite, hence it is co-final in N.
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5. Study the convergence of a sequence (xn) in the metric space (S, d) if:

a) The subsequences (x2n), (x2n+1), and (x3n) are convergent;
b) The subsequences (xkn) are convergent for all 2k ;
c) The subsequences )( knx are convergent for all 2k .

Hint. a) The sequences (x2n) and (x3n) have a common subsequence, e.g.
(x6n), hence their limits coincide. Similarly, because (x3(2n+1)) is a common
subsequence of (x2n+1) and (x3n), it follows that (x2n) and (x2n+1) have the
same limit. Finally, each term xn is either in (x2n) or in (x2n+1).

b) and c). Take S = R, endowed with its Euclidean metric, and remark

that the subsequence )(
npx , where pn is the nth prime number, may have no

term in the considered subsequences, hence (xn) may be divergent since at
least two distinct accumulation points are possible.

6. On the nonvoid set S, we consider the discrete metric (defined in § I.4.).

Show that (xn) is a fundamental sequence in (S, d) iff there exists a rank

0n N such that xm = xn whenever m, n 0n . Deduce that the metric space

(S, d) is complete.

Hint. Take  =
2
1 < 1 in the definition of a fundamental sequence, and use

the convergence of the constant sequences.

7. Let  be the Euclidean metric on S = R, and let  : R!R be 1:1. We

note A =  (R), and we define d as in the problem I.4.7, i.e.

d (x, y) =  (  (x),  (y)).
a) Take  (x) = x [1 + x ] – 1 and show that the sequence (n) is fundamental

but not convergent relative to the corresponding metric d .
b) Show that the real sequence (xn), of terms













oddisnif

evenisnif
x

n

n
n 1

1 1

is divergent relative to the metric d generated by

 (x) =








QR

Q

\xifbax

xifbax
, a > 0.

c) Show that, if S = Q and  : Q!N is a bijection, then a sequence (xn) is

fundamental relative to the corresponding metric d iff it is constant
except a finite number of terms.
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Hint. a)  (n) and  (m) are arbitrarily close to 1, hence also to each other,
if the values of n and m are large enough.

b) Because 1 + 
n
1 Q and 1 – 

m
 R\Q, we have d(xn, xm) > 2a whenever

n is even and m is odd.
c) If x  y, then d(x, y) 1, since  (x),  (y) N.

8. Show that in C we have:

a) 00  nn zz ; b) ]argarg[0 zzandzzzz nnn  .

c)    sincos1lim ii
n

nn



.

Hint. a) Compare the definitions of a limit in R and C. b) Use the formulas

of z and zarg . c) Evaluate

  111
2

2

2


n

n

n

n
i  and      

n

n

n
arctgni1arg .

9. (Cesàro-Stolz Lemma in C) Let (zn) be a sequence of complex numbers,

and let (rn) be an increasing and unbounded sequence of real numbers.
Show that the following implication holds

l
r

z

rr

zz
l

n

n

nnn

nn

n












limlim

1

1

and use it to find the limits of the sequences:

a)
n

zn

b)
n

zzz n ...21 where zzn  c)

nzz

n
11 ...

1


where zzn 0 .

Extend this problem to the linear space Rp , where p > 2.

Hint. Decompose the complex numbers in real and imaginary parts and
reduce the problem to R, where we may prove the stated implication by

operating with inequalities in the “ - n0()” definition of the limit l .

10. Let (an) and (bn) be sequences in the normed linear space (L,  ), such

that aan  and bbn  in the topology generated by  . Prove that:

1. baba nn  2. aan   3. aan  4. baba mn ,, 

whenever  is generated by the scalar product .,. .

Hint. Use the relations: 1. bbaababa nnnn  )()( ,

2. aaaa nn   3. aaaa nn  and 4.  baba mn ,,

 baba nmn ,,  + baban ,,  bba mn  + baan  .
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§ II.2 SERIES OF REAL AND COMPLEX NUMBERS

The notion of series has appeared in practical problems, which need the
addition of infinitely many numbers. A nice example is that of Achilles and
the tortoise: Let us say that Achilles runs ten times faster than the tortoise,
and between them there is an initial distance d. Trying to catch the tortoise,
Achilles runs the distance d in t seconds, etc. Since this process contains
infinitely many stages, it seems that Achilles will never catch the tortoise.
In reality, by adding all the necessary times, we still obtain a finite time, i.e.

t + t/10 + t/100 + … =
9

10

1
10
1

tt



,

according to the formula of the sum of a geometrical progression.
Another significant case is that of the periodical decimal numbers. For

example, summing-up a geometrical progression again, we obtain

0.23 23 … = 0.(23) =
100

23
(1 + 10 – 2 + 10 – 4 + …) =

99

23
.

In essence, the notion of series is based on that of sequence:
2.1. Definition. We call series in  (which means R or C) any pair (f, g) of

sequences, where f : N defines the general terms of the series, also

noted xn = f (n), and g : N represents the sequence of partial sums, i.e.

sn = x0 + x1 + …+ xn = g(n).
Instead of (f, g), the series is frequently marked as an “infinite sum”

x0 + x1 + … + xn + … =  nx .

More exactly, we say that the series (f, g) is convergent to s, respectively
s is the sum of the series, iff the sequence (sn), of partial sums, converges to
s, and we note

ssx n
nn

n 





 lim

0

.

2.2. Remarks. a) In practice, we may encounter two types of problems,
which correspond to the similar problems about sequences, namely:
10. Establishing the nature of the given series, i.e. seeing whether the series

is convergent or not, and
20. Searching for the value of the sum s.

Establishing the nature of a series generally involves a qualitative study.
It is still essential in the practical use of the series, because the exact value
of s is too rarely accessible, and we must deal with some approximations.
The computer techniques are obviously efficient, but even so, we need
some previous information about the behavior of the series. In other words,
from a practical point of view, the two aspects are strongly connected.
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b) The notion of series involves an algebraic aspect, that is the addition of n
terms in sn, and an analytical one, namely the limiting process of finding s.
Consequently, a good knowledge of operating with convergent sequences
from the algebraic point of view is indispensable. We recall that the case of
the real sequences is well studied in high school. It is easy to see that the
complex sequences have similar properties, i.e. if (zn)nN and ( n) nN are

convergent sequences in C, then


n

lim (zn +  n) =
n

lim zn +
n

lim  n ;


n

lim (zn ·  n) = (
n

lim zn )·(
n

lim  n),


n

lim
n

n
n zz




lim

11
, where zn  0 and

n
lim zn  0.

Because we realize the addition of the series “term by term”, it follows
that the sum of two convergent series is also convergent. The multiplication
and the quotient of series is more complicated (see definition 2.27. below).
c) Adding infinitely many numbers may lead to unbounded sequences of
partial sums, so we have sometimes to deal with convergence to infinity.
We consider that the situation in R is already known, including the

algebraic operations with  , and the indeterminate cases. The problem
of infinity in C is usually treated as one point compactification, and we

sketch it later in §III.1.).

Now, we start with some criteria (tests) of convergence, which we need
in order to answer the question about the nature of a series.
2.3. Theorem. (The general Cauchy’s criterion) The series  nx in  is

convergent iff for any  > 0 we can find n0() N such that

| xn+1 + xn+2 + … + xn+p | < 
holds for all n > n0() and arbitrary pN.

Proof. The assertion of the theorem reformulates in terms of  and n0() the
fact that a series  nx is convergent iff the sequence (sn) of partial sums is

fundamental. This is valid in both R and C. }

2.4. Corollary. If a series  nx is convergent, then xn0.

Proof. Take p = 1 in the above theorem. }

Because this corollary contains a necessary condition of convergence,
namely xn0, it is frequently used to prove the divergence. We mention
that this condition is not sufficient, i.e. xn0 is possible in divergent series,
which is visible in plenty of examples.
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2.5. Examples. (i) To get the complete answer about the convergence of

the geometric series  nz , zC, we consider two cases:

 If q = | z |<1, then z n
0, and consequently (sn)  s, where

sn = 1+ z + … + z n – 1 = s
zz

zn









1

1

1

1
.

 If | z |1, then the series is divergent because the general term is not
tending to zero (as the above corollary states).

(ii) To show that condition xn0 is not sufficient for the convergence of a

series, we may consider the harmonic series  n
1 . Obviously, xn = 01 

n
,

but the series is divergent, since grouping the terms as

...)
8

1

7

1

6

1

5

1
()

4

1

3

1
(

2

1
1 

each bracket is greater than ½ .

From the general Cauchy’s test we may derive other theoretical results:
2.6. Theorem. (Abel’s criterion) Let  nz be a series of complex numbers,

which has a bounded sequence of partial sums, and let (n) be a decreasing
sequence of real numbers, convergent to zero. Then the series )( nnz  is

convergent.
Proof. By hypothesis there exists M > 0 such that | sn | < M for all nN,

where sn are the partial sums of the series  nz , i.e. sn = 


n

k
kz

0

. We claim

that the series )( nnz  satisfies the Cauchy’s criterion 2.4. from above.

In fact, for arbitrary n, pN we may evaluate:

| n+1 zn+1 + n+2 zn+2 + … + n+p-1 zn+p-1 + n+p zn+p| =
| n+1 (sn+1 – sn) + n+2 (sn+2 – sn+1) + …+ n+p (sn+p – sn+p-1)| =

| – n+1 sn + (n+1 – n+2) sn+1 + … + (n+p-1 – n+p) sn+p + n+p sn+p | 
M [n+1 + (n+1 – n+2) + … + ( n+p-1 – n+p) + n+p] = 2 M n+1 .

According to the hypothesis n0, for any > 0 we can find n0()N,

such that n > n0() implies 2M n+1 < . To conclude, for any > 0 we have
| n+1 zn+1 + n+2 zn+2 + … + n+p-1 zn+p-1 + n+p zn+p| < 

whenever n > n0() . }

2.7. Corollary. (Leibniz’ test for alternate series). If (n) is a decreasing
sequence of positive real numbers, which tends to zero, then the alternate

series   n
n)1( is convergent.

Proof. The partial sums of the series   n)1( are either –1 or 0, hence the

sequence (sn) is bounded. }
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2.8. Examples. (i) The alternate harmonic series 


n

n)1(
is convergent

since we may take n = 1/n in the above Leibniz’ criterion.
(ii) The condition that (n) is decreasing is essential in Abel’s criterion,

i.e. if n0 non-monotonously, the series may be divergent. For example,
let us consider the series:

1– ...)
5

1
(

1
...

3

1
)

5

1
(

2

1

5

1 2  n

n
where the positive terms form the harmonic series (divergent!), and the
negative ones belong to a geometrical series of ratio 1/5.

(iii) The condition that (n) is decreasing is still not necessary. As an
example, the alternate series

1– ...
)2(

1

)12(

1
...

4

1

3

1

2

1
23232





nn

is convergent even if n0 in a non-monotonous fashion.
2.9. Remark. In the particular case of the series with real and positive
terms, there are more criteria. For example, in such a case it is obvious that
the convergence of a series reduces to the boundedness of its partial sums.
The following theorems 2.10 – 2.20 offer other instruments in the study of
convergence. These theorems can also be used for some series of complex
numbers, via the series of moduli (see later the absolute convergence).
2.10. Theorem. (The integral Cauchy’s criterion) Let function f : R+R+

be continuous and decreasing, and for all nN, let us note:

xn = f (n), sn = 


n

k
kx

0

, and yn = 
n

dttf
0

)( .

Then the series  nx is convergent iff the sequence (yn) is bounded.

Proof. The integrals exist because f is continuous. Since f is decreasing, for
all k = 1, 2, …. and t[k–1, k] we have f(k–1)  f (t)  f(k). Integrating
these inequalities on [k–1, k], we obtain

xk-1  


k

k

dttf
1

)(  xk .

Consequently, adding those relations that correspond to k = 1, 2, …, n, we
obtain sn – xn  yn  sn – x0 , i.e. (sn) and (yn) are simultaneously bounded.
Since xn  0, it follows that (sn) is increasing, hence its boundedness equals
its convergence. }

2.11. Example. The generalized harmonic series  n/1 , where  > 0, is

obtained by using the above sampling process from f :[1, + )R+ , where

f (t) = 1/t . It is easy to see that for any nN* we have
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yn =














1ln

1)1( 1
1

1

1 





ifn

ifn

t

dtn

.

So we see that (yn) is bounded if (1, + ), and unbounded if (0, 1],
hence the generalized harmonic series is convergent if and only if >1.

From the already studied convergent or divergent series we can deduce
the nature of some other series using comparison criteria:
2.12. Theorem. (The 1st criterion of comparison) Let  nx and  ny be

series of positive real numbers, for which there exists a rank n0 N such

that n > n0 implies xn  yn . Then the following implications hold:
a)  ny convergent   nx convergent, and

b)  nx divergent   ny divergent.

Proof. The inequalities between the general terms imply similar inequalities
between the partial sums. Finally, the convergence of a series with positive
terms, reduces to the boundedness of the partial sums. }

2.13. Theorem. (The 2nd criterion of comparison) Let  nx and  ny be

series of positive real numbers such that

n

n

n

n

y

y

x

x 11  

holds whenever n is greater than some rank n0N. Then (as before):

a)  ny convergent   nx convergent, and

b)  nx divergent   ny divergent.

Proof. For simplicity, let us suppose n0 = 1. The inequality assumed in the
hypothesis leads to:

........
2

2

1

1 
n

n

y

x

y

x

y

x
.

If q denotes the first quotient, then xn  q yn for all nN, hence we can

apply the former criterion of comparison. }

2.14. Theorem. (The 3rd criterion of comparison; the limit form) Let  nx

and  ny be series of positive real numbers, yn > 0, such that there exists

 = )/(lim nn
n

yx


.

Then the following cases are possible:
a) If 0 <  < + , then the two series have the same nature;
b) If  = 0, then [ ny convergent   nx convergent]; and

c) If  = +  , then [ ny divergent   nx divergent].
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Proof. a) By hypothesis, for any positive , there exists a rank n0()N,

such that  –  < (xn/yn) < +  holds for all n > n0(). In other words, we
have (  – )yn < xn < ( + )yn , hence we can use theorem 2.12.
b) Similarly, for any > 0, there exists a rank n0()N, such that n > n0()

implies xn < yn .
c) For any M > 0 there exists n0(M)N, such that for all n > n0(M) we have

xn < M · yn . }

2.15. Theorem. (D’Alembert’s quotient criterion) Let us assume that  nx

is a series of positive real numbers, and let us note qn = xn+1/xn .
a) If there exists n0 N and q < 1, such that qn < q holds for all n > n0, then

the series is convergent;
b) If there exists n0N such that qn  1 holds for all n > n0, then the series

is divergent.
Proof. a) For simplicity, we may suppose n0 = 1. Multiplying the relations
xk+1 < q·xk for k = 1, 2, …, n, we obtain that xn+1 < qn · x1. Consequently,
our series is compared with a convergent geometric series of ratio q < 1.
b) The sequence of general terms does not tend to zero. }

2.16. Corollary. (D’Alembert’s criterion in the limit form). Let  nx be a

series of strictly positive real numbers, and let us note qn = xn+1/xn . If there
exists  = 


n

n
qlim R, then the following implications hold:

a)  < 1  convergence, and
b)  > 1 divergence.

If  = 1 we cannot decide about the nature of the series.
Proof. By hypothesis, we have  – < qn <  +  for sufficiently large n.
The above theorem 2.15.a) works with q =  +  < 1 to prove a). Similarly,
in the case b), we may take qn >  – > 1 in 2.15.b).

To show that the case  = 1 is undecided, we may exemplify by harmonic

series  n

1 , which is convergent at  = 2, and divergent at  = 1. }

2.17. Theorem. (Cauchy’s root criterion) If  nx is a series of positive real

numbers, then the following implications hold:

a) If there exists n0 N and q (0, 1), such that n
nx q for all n > n0, then

the series is convergent; and

b) If n
nx 1 holds for infinitely many indices, then the series is divergent.

Proof. a) For n > n0 we have xn  qn, where  nq is a convergent geometric

series. The assertion a) follows by theorem 2.12.
b) The general terms does not tend to zero. }
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2.18. Corollary. (Cauchy’s root criterion in limit form) Let  nx be a series

of positive real numbers, for which there exists n
n

n
x


 lim .

a) If  < 1, then the series is convergent; and
b) If  > 1, then the series is divergent.

The case  = 1 is undecided.

Proof. For any > 0 we have  –  < n
nx < +  if n is large enough.

a) If  < 1, then also q = +  < 1 for some conveniently small , as in case
a) of the above theorem.

b) If > 1, then we similarly use the inequalities 1 < (  – )n < xn .
If  = 1, we may reason as for corollary 2.16. }

2.19. Theorem. (Raabe-Duhamel’s test) Let  nx be a series of strictly

positive real numbers, and let us note rn = n ( 1
x

x

1n

n 


). We claim that:

a) If there exist n0 N and r > 1, such that rn  r holds for all n  n0 , then

the series is convergent;
b) If there is some n0 N such that rn  1 holds for all n  n0 , then the

series is divergent.
Proof. a) For simplicity, let us assume that n0 = 1. If we note r = 1 + , for
some  > 0, then the inequality in the hypothesis takes the form

xk+1  k xk – (k + 1) xk+1 , kN.

By adding the inequalities corresponding to k = 1, 2, …, n–1, we see that
the sequence of partial sums is bounded, hence convergent.

b) If n  n0 , then the inequality from hypothesis leads to

n

n

n

n

x

x
1

1
1

1   ,

which realizes a comparison with the harmonic series. }

2.20. Corollary. (Raabe-Duhamel’s criterion in limit form). Let  nx be a

series of strictly positive real numbers, for which there exists

)1(lim
1


 n

n

n x

x
n R+ .

a) If  > 1, then the series is convergent, and
b) If  < 1, then the series is divergent.

The case  = 1 is undecided.
Proof. For any > 0 we have  –  < rn <  +  if n is large enough.

a) We take  such that r =  – > 1, and we use part a) from 2.19.
b) We introduce rn <  + < 1, in theorem 2.19.b).
For  = 1, see problem 7 at the end of this section. }
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2.21. Remark. In practice, it is advisable to use the tests of convergence in
the order of simplicity and efficiency, which has been adopted in the above
presentation too, i.e. from 2.15 to 2.20. The reason of this procedure comes
out from the fact that the Cauchy’s test is stronger than the D’Alembert’s
one, and the Raabe-Duhamel’s criterion is the strongest of them. In fact,
beside proposition 2.22 below, which compares the quotient and the root
tests, the Raabe-Duhamel’s test is working in the case xn+1/xn 1, i.e.
exactly when these two criteria cannot decide.

The above criteria (in the presented order) refer to slower and slower
convergent series. Therefore, at least in principle, list of criteria can be
infinitely enlarged, since for each series there exists another one, which is
slower convergent (see problem 8 below, [BC], [SG], etc.).

The following proposition illustrates the difference of efficiency between
the Cauchy and D’Alembert’s tests.
2.22. Proposition. Let (xn) be a sequence of strictly positive real numbers.

If )/(lim 1 nn
n

xx 


there exists, then n
n

n
x


lim also exists, and they are

equal. The converse implication is not true.
Proof. If we take zn = ln xn and rn = n in the Cesàro-Stolz lemma (see [SG],
[PM1], or problem 9 in § II. 1, etc.), then the existence of

l
n

n

nn

nn

x

x

nrr

zz

n
lnlnlimlim 1

1

1  











implies the existence of

n
n

nn

x

nr

z

n
xn

n

n


 limlnlimlim

ln

and the equality lxn
n

n



lim . A direct proof, in terms of  and n(), with

separate cases l = 0, l =  , and l R+
* is recommended to the reader.

To see the invalidity of the converse, we may take as counterexample the

series of general term xn =
1n

n

2

3)1(



, n = 1, 2, … The limit of xn+1 / xn does

not exist at all, while 2/1n
nx . }

In particular, according to Corollary 2.18, but not 2.16, the series

 nx from the above counterexample is convergent. In addition, the sum

can be computed using geometric series.
2.23. Remark. Comparing the harmonic series (example 2.5 (ii)) with the
alternate harmonic series (example 2.8 (i)), we see that taking the series of
absolute values generally affects the convergence. On the other side, using
criteria concerning series with positive terms, it is easier to obtain
information about series of absolute values. In order to develop such a
study we need more notions concerning the series in ; as a matter of fact,
we refer to series in C, and treat the real series as a particular case.
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2.24. Definition. The series  nz is said to be absolutely convergent iff

 nz is convergent. We say that the series  nz is conditionally (or semi-)

convergent iff it is convergent, but  nz is divergent.

Besides some remarks in examples like the previously mentioned ones,
the above definition makes tacitly use of the following property:
2.25. Proposition. The absolute convergence implies convergence.
Proof. The obvious inequality

| zn+1 + zn+2 + … + zn+p| | zn+1| + | zn+2| + … + | zn+p|
permits us to compare the nature of the series  nz and  nz via the

general Cauchy’s criterion. }

Simple examples show that the converse implication is not true.
2.26. Remarks. (i) The semi-convergent series of real numbers have a
remarkable property, namely by changing the order of terms, we can
produce other series whose sequences of partial sums tends to a previously
given number. In fact, such a series contains infinitely many positive, as
well as negative terms, which tend to zero. By adding conveniently chosen
terms, we can approximate any real number (see problem 9 at the end). Of
course, changing the order of terms means to take another series. On the
other hand, we mention that in the case of an absolutely convergent series,
the sum is independent of this order (known as a Cauchy’s theorem).
(ii) The absolute convergence is also important in the process of operating
with convergent series. In the case of addition, there is no problem: we add
term by term, and the sum of two convergent series is convergent. Doing
the product is more complicated, since writing all the possible products
between terms can be done in different ways, and the convergence of the
product series is generally not guaranteed by that of the initial ones.

In the sequel, we present the Cauchy’s rule of multiplying series, which
is most frequently used for power series:
2.27. Definition. The product (or convolution) of two series

z0 + z1 + z2 + … + zn + …
Z0 + Z1 + Z2 + … + Zn + …

is defined (in the Cauchy’s sense) by the series
ζ0 + ζ1 + ζ2 + … + ζn + …

where  the terms ζ0 , ζ1 , … are obtained by the crossing multiplication:
0 = z0 Z0 ,
1 = z0 Z1 + z1 Z0 ,
2 = z0 Z2 + z1 Z1 + z2 Z0 ,
… … …

n = z0 Zn + z1 Zn-1 + …+ zn-1 Z1 + zn Z0 = 




n

k
knk Zz

0

,

… … …



Chapter II. Convergence

86

Simple examples show how unpredictable the square of one (hence in
general the product of two) semi-convergent series can be:
2.28. Examples. (i) Semi-convergent series with divergent square.

Let us consider the series of term zn = i n n - 1/2 for all nN*. Its square,

obtained by taking zn = Zn in the Cauchy’s rule, has the general term

 n =  
 

 
n

k

n

k

nknk knkikniki
1 1

111 )1()1/)(/( .

Because each term of the last sum is greater than 1/n, we obtain | ζn |1,
hence the square series is divergent.

On the other hand, the absolute convergence is not necessary to the
convergence of the product:
(ii) Semi-convergent series with convergent square.

The square of the alternate harmonic series is convergent. In fact, this
square has the general term

n =  
 



 







 n

k

n

k

nn
knn

k

k

knknkknk 1 11

1

1

2
)1(

)1(

1
)1(

1

)1()1(
,

since according to the formula

)1(

1

1

11

knk

n

knk 





 ,

each term in ζn appears twice. Consequently the square series is alternating,
and | n | 0 because 1/n 0 implies, via Cesàro-Stolz’ theorem, that also





n

k kn 1

0
11

.

Exact information about the nature of a product can be obtained only if at
least one of the series is absolutely convergent:
2.29. Theorem. (Mertens). The product of two (semi-)convergent series is
convergent if at least one of them is absolutely convergent.
2.30. Theorem. (Cauchy). The product of two absolutely convergent series
is absolutely convergent, and the sum of the product series equals the
product of the initial sums.
Proof. Let us assume that the series  nx and  ny are convergent to X,

respectively Y, and let  nz be the product of the initial series  nx and

 ny . Because for some ,  N we have




)....)(...(... 00
0

00  yyxxyxyxz
ss mn

n

k
k XY ,

it follows that  nz is absolutely convergent. The indices ns and ms are not

specified because the above reason is valid for any rule of realizing the
product, which takes into consideration all the pairs of terms.
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Since the nature and the sum of an absolutely convergent series does not
depend on the order of terms, we can arrange zk such that:






























 n

k
k

n

k
k

n

k
k zyx

000

,

which proves the relation between the sums. }

About the sum of a product series we also mention (without proof):
2.31. Theorem. (Abel). If the series  nu ,  nv , and their product  nw ,

are convergent to U, V, respectively W, then UV=W.

To illustrate how the above results are to be used in practice, we consider
the following particular examples:
2.32. Application. Study the convergence of the series:

a) 1 + ...
!

)1)...(1(
...

!2

)1(








n

n


b) 1 – ...
!

)1)...(1(
)1(...

!2

)1(








n

nn 


a) Let an() be the general term of the series. Looking for the absolute
convergence, when the theory of series with positive terms is applicable,
we see that only the Raabe-Duhamel’s test is working, and it yields:

























 n

n

a

a
n

nn

n

n

)1(
lim1

)(

)(
lim

1

= + 1.

Consequently, if > 0, then we have + 1 > 1, and according to the
corollary 2.20, the series is absolutely convergent. As a matter of fact, this
case includes = 0, when an() = 0 holds for all n1, i.e. the partial sums
of the series are constantly equal to 1.

In the sub-case < 0, let us note  = – , and remark that

an() = ( – 1 )n

!

)1)...(1(

n

n  
= ( – 1)n bn(),

where the last equality represents a notation. Consequently, the series is
alternate, but because

1)(

)(1






n

n

b

b

n

n 




,

it follows that, for – 1, the general term doesn’t tend to zero any more,
hence the series diverges.

The remaining case corresponds to (– 1, 0), when the sequence (bn())
is decreasing. Using 2.20 again, the series  )(nb diverges since

11
)1(

lim1
)(

)(
lim

1



























n

n

b

b
n

nn

n

n
.
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In other terms, the initial series is not absolutely convergent, so we have to
analyze it semi-convergence. In this respect, let cn() be the general term of
a sequence for which:

bn() =
n

1
[c1 () + c2 () + … + cn ()].

Using a similar expression of bn -1 (), we obtain
cn () = n bn () – (n – 1)bn-1() = bn -1 ().

Because (bn()) is a decreasing sequence of positive numbers, it is
convergent, hence (cn()) is convergent too. Let us note its limit by




)(lim n
n

c R+ . According to the Cesàro-Stolz’ theorem, we have also

)(lim n
n

b


 , hence  =  . Because > 0, it follows that  = 0.

Consequently, the condition of the Leibniz’ test (corollary 2.7) are fulfilled,
and we can conclude that the initial series is semi-convergent.

In conclusion, the complete answer in the case a) is:
- absolute convergence if   0 ;
- semi-convergence if ( – 1, 0) ;
- divergence if  – 1.

b) Similarly to the case a), the absolute convergence holds if   0.
On the other hand, if  < 0, then the same substitution, namely  = – ,

reduces the series to  )(nb . As we have already seen, this series is

divergent according to the Raabe-Duhamel’s test.
The conclusion relative to case b) is:

- absolute convergence if   0 , and
- divergence if  < 0.

Using some theoretical results from the next sections, we will be able to
get information about the corresponding sums (namely 2, respectively 0).
So far we can decide only for  = n N, when the series represent finite

(binomial) sums, namely 2 n in the first case, and 0 in the second one.
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PROBLEMS §II.2.

1. Test the following series for convergence:

(a)  n

n
2

1
, (b) 

n

nln
, (c)   1)2( nn , (d) 

12

1

n

Hint. Compare to the series ,2/1 n and  n/1 .

2. Give examples of convergent series  na and divergent  nb such that

one of the following inequalities be valid for all n = 1, 2, …
(i) an  bn (in R), (ii) | an | | bn | (in R, and in C).

Hint. (i) an = 1/n2 , bn = – 1/n;

(ii) an = ( – 1)n / n, and bn =
n2

1  
44

))1(1sin())1(1cos(  nn i  .

3. Test the following series for convergence:

(i) 2/2)12( nn   , (ii) 




)34(...951

)13(...852

n

n
.

Hint. Use the D’Alembert ‘s test.

4. Using the Cauchy’s criterion, study the convergence of the series:

(i)  











n

n

n

12

1
, (ii) 














12

13

n

n

n
.

Hint. In the second case, the coefficients of the even powers are null.

5. Test for convergence the generalized harmonic series  n

1 , R.

Hint. If  0 , the series diverges. If  > 0, we evaluate rn in the Raabe-
Duhamel’s criterion, and we obtain

rn = n
 

n

n

n

n

/1

1)/1(1
1

)1( 

















 





.

Because 






 x

x
r

x
n

n

1)1(
limlim

0
, the series is convergent for  > 1,

and divergent for   1 (the case = 1 has to be studied separately).

6. Decide about the nature of the series 


 



1 )2(...642

)12(...531

n n

n
.

Hint. The Raabe-Duhamel’s criterion gives rn = n/(2n + 1)
2

1
 .
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7. Use the Raabe-Duhamel test to establish the nature of the series:

(a)  








1

2

))...(2)(1(

)1)...(1(
)12(

n
n

n
n




, where  R, and

(b) 





1
)1)...(1(

!

n
n

n


, where 0 .

Hint. (a) If xn denotes the general term of the series, then

 1
1


n

n

x

x
n =

2

22

)(

)221()412()28(

32 n

n

n
n











14   .

Consequently, the series is convergent for  > 0, and divergent for < 0. If
 = 0, then xn = 0, hence the series is convergent.

(b) If yn represents the general term of the series, then






 



1
1n

n

y

y
n =

1
)1(




n
n 1  .

So we deduce that the series converges for  > 2, and it diverges for < 2.

In the case = 2, we have yn =
1

1
n

, hence the series is divergent.

8. Let an a and bn b in , such that an  a and bn  b for all n N. We

say that (an) faster converges than (bn), respectively (bn) slower converges

than (an), iff 0lim 




 bb

aa

n n

n . Similarly, if aa
n

n 


0

and bb
n

n 


0

, we say

that  na is faster than  nb , respectively  nb is slower than  na , iff

0lim 
 k

k

n 


, where 




n

k
kn aa

0

 and 



n

k
kn bb

0

 are the remainders

of the respective series. Show that:
(a) If  na and  nb are convergent series of strictly positive numbers,

and an 0 faster than bn 0, then  na is faster than nb .

(b) For each convergent series  nb there exist other convergent series,

 na faster, and  nc slower than  nb .

(c) If we rewrite the geometric series of terms xn = 2 – n , where n  1, by

decomposing the general term xn into n terms nnnn
xx 11 ... , then the

resulting series  ny is slower than  nx .

Hint. (a) 0lim 
 n

n

b

a

n
means that to arbitrary  > 0 there correspond a rank

n() N such that 0 <
k

k

b

a
<  holds for all k  n(). By multiplying the

inequalities 0 < ak <  bk , where k  n  n(), we obtain
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11

0
nk

kn
nk

kn ba  .

(b) Using (a) we may take an = 1
nb and cn = 1

nb , where (0, 1).

(c) To express yn , let us note n = 1 + 2 + … + (n – 1) =
2

)1( nn
. It is easy

to see that for each k N*, there exists an unique rank n(k) N*, such that

n(k)  k < n(k) + 1 . Consequently, we obtain yk = )()(
1

knkn
x , and finally

02)( 2

)(2)(3

)()(
1

)(

)()(
1


 knkn

knkn

kn

knkn

k

k

k kn
x

x

x

x

y

x 
.

9. Approximate the numbers 5/3, , – e, and ln 2 with four exact decimals
using terms of the alternate harmonic series.

Hint. We have 1 +
3
1 +

5
1 +

7
1 < 5/3 < 1 +

3
1 +

5
1 +

7
1 +

9
1 , hence we start to

use negative terms and we obtain 1 +
3
1 +

5
1 +

7
1 +

9
1 –

2
1 < 5/3. Then we

add positive terms until we overpass 5/3 and so on. We similarly treat the

numbers , – e. Finally, 




 

1

)1( 1

n
n

n

= ln 2.

10. Test for convergence the following series:

(a) 


2 ln

1

n n
, (b) 



2 ln

1

n nn
, (c) 



2 )ln)(ln(ln

1

n nnn
, and (d) 







2

12 )ln(
n

nn .

Hint. (a) can be compared to the harmonic series; The others can be studied
by the integral test, using the primitives ln(ln x), ln(ln(ln x)), and – ln –1 x .
Consequently, the single convergent series in this exercise is that of (d).

11. Let us note n =   1
)1(


 nn , where nN, n2. Give an explanation

why   n
n 1)1( is divergent, while n  0.

Hint. (n) is not monotonic. To justify the divergence we may use the

inequality 1221)(  nnn > 0 in evaluating

12

1

)(212

)(1

12

1

112

1












 nnnn

n

nn 


,

which offers clear information about the odd partial sums, namely:

s3 = ...;
12

1
...

3

1
;...;

3

1

13

1

12

1
12












n
s n .



Chapter II. Convergence

92

12. Let *)( Nnna be a sequence of positive real numbers such that  2
na is

convergent. Show that the series  na
n

1
converges too.

Hint. From (an –
n

1
)2 > 0, we deduce that

2
2 12











n
aa

n
nn .

13. Let s be the sum of the alternating harmonic series (s = ln2 will be
obtained in the next section, using function series). Find the sum:

...
4

1

24

1

12

1
...

8

1

6

1

3

1

4

1

2

1
1 


































kkk

Hint. Express the partial sums σn of the rearranged series by the partial
sums sn of the initial (alternate harmonic) series. For example,

3m =  
 




























m

k

m

k
ms

kkkkk1 1
2

2

1

4

1

24

1

4

1

24

1

12

1
,

which leads to 3m
2

1
 s. We may similarly treat 3m+1 and 3m+2.

14. Evaluate the following sums:

(a) 





1

0where),121(
n

nnn  ;

(b) 


 1 )1)((

1

n nn 
, where  R \ Z;

(c) 





1

12 )3816(
n

nn ; (d) 






1

1
ln

n n

n
; (e) 







1 5

)1(2

n
n

nn

.

Hint. (a) Note nann  1 , and find sn = an+1 – a1 . For (b)

and (c), decompose into elementary fractions, and compute sn .

15. Show that the divergent series
2 + 2 + 22 + 23 + … + 2n + ... and – 1 + 1 + 12 + 13 + … + 1n + ...

have an absolutely convergent product. Extend this property to an arbitrary

pair of series of the form a0 + 
1n

na , and b0 + 
1n

nb , where a b.

Hint. The general terms of the product series are c0 = – 2, and cn = 0 at the
remaining n = 1, 2, … . In general, we have

cn = a0 bn + b0 an – an – bn +
ba

ba nn



  11

=
ba

BbAa nn




,

where A = a + (b0 – 1)(a – b), and B = b + (1– a0)(a – b). In particular, we
can realize A = B = 0, even if a – b = 1.
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§ II.3. SEQUENCES AND SERIES OF FUNCTIONS

In this section, we consider sequences and series whose terms are real or
complex functions. From lyceum, we already know some simple cases of
real functions, and we can easily extend them to complex variables. In
principle, each property in R has a valid extension in C, so that the notation

 for both R and C will be very useful.

3.1. Examples. a) Rising x  – 1 to an increasing power leads to no limit,
but applying the same process to x > – 1 yields


















1

11

10

lim

xif

xif

xif

xn

n
.

Obviously, this formula describes the behavior of the general term of a
geometric progression when n  .

Using the trigonometric form of a complex number, we can easily pass

from x R to z C. In fact, because
nn zz  , we have


















1

11

10

lim

zif

zif

zif

zn

n

(where understanding  on the Riemann’s sphere is advisable). In the

remaining cases, when 1z but 1z , from )2(modargarg znzn  we

deduce that n

n
z


lim doesn’t exist.

b) Adding the former terms of the geometric progression leads to the

geometric series  nx . According to the above result, it is convergent iff

1x , when its sum is

xx

x
x

n

nn

n
















1

1

1

1
lim

0

.

Otherwise, this series is divergent.
Similarly, in the complex framework, we have

zz

z
z

n

nn

n
















1

1

1

1
lim

0

if and only if 1z .
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c) All the sequences and series with parameters, frequently met in lyceum,
represent sequences and series of functions. For example, it should be well

known that
nn

1
lim


sin n x = 0 at any xR, etc. The complex analogue of

such results needs a thorough knowledge of the complex functions of
complex variables, like sin n z , with zC, in this case.

Similar theoretical aspects, as well as plenty of practical problems, lead
us to investigate general methods of defining complex functions, including
the elementary ones (see § II.4). To anticipate, we mention the utility of the
complex functions in tracing conformal maps, calculating real (sometimes
improper) integrals, and solving differential equations (see [HD], etc.).

In other words, our primary interest in studying sequences and series of
functions is their role in the construction of other functions.

Beside the analytical method of defining functions, which is based on
power series, considering sequences of functions may offer significant
information about plenty of numerical sequences and series. The advantage
consists in the use of derivation, integration, and other operations based on
a limit process that involves functions.

As a consequence of these purposes, the present section has two parts:
(i) Types of convergence and properties of the limit function, and
(ii) Developments in (real) Taylor series.

3.2. Definition. Let DR be a fixed domain, and let F (D, R) = RD be the

set of all functions f : D  R. Any function F : N F (D, R) is called

sequence of (real) functions. Most frequently it is marked by mentioning
the terms (fn), where fn =F(n), and n is an arbitrary natural number.

We say that a number xD is a point of convergence of (fn) if the
numerical sequence (fn(x)) is convergent. The set of all such points forms
the set (or domain) of convergence, denoted Dc . The resulting function, say
 :Dc  R, expressed at any x Dc by

 (x) = )(lim xfn
n 

,

is called limit of the given sequences of functions. Alternatively we say that
 is the (point-wise) limit of (fn), (fn) p-tends to , etc., and we note

 


p
nn

n

p

ff ,lim , etc.

The notions of series of functions, partial sums, infinite sum, domain of
convergence, etc., are similarly defined in F (D, R). For this reason, in the

former part of the present paragraph we mainly refer to sequences (not
series) of functions.

In addition, these notions have the same form in the case of complex
functions, i.e. in F (D, C), where also D  C.
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3.3. Proposition. A sequence (fn) of functions is point-wise convergent to

function  (i.e.



n

p

lim fn on Dc) iff

 ),(0 0  xnDx c N such that n > n0(x, )  | fn(x) – (x)| < .

Proof. This condition expresses the convergence of the numerical
sequence (fn(x)) at any xDc . Of course, in the complex case we preferably
replace x by z  Dc C , and the above condition takes the form

 ),(0 0  znDz c N such that n > n0(z, )  | fn(z) – (z)| < ,

where the modulus  corresponds to either R or C . }

This condition of point-wise convergence can be formulated without
explicit mention of the limit function:
3.4. Theorem. (The Cauchy’s general test of point-wise convergence) The
sequence (fn) is point-wise convergent on Dc iff

 ),(0 0  xnDx c N such that m, n > n0 (x, )  | fm(x) – fn(x) |< .

Proof. The numerical sequence (fn(x)) is convergent iff it is a Cauchy
sequence at any xDc . A similar condition holds in C . }

3.5. Remark. We have to mention x in n0 (x, ) because generally speaking,
this rank depends on x. As for example, we may consider fn : [0,1]R,

fn(x) = xn; gn : [– 1, 1]R, gn(x) = xn (1 – x2n); etc. In fact, if we evaluate fn

(or gn) at different points xn = 2 – 1/n
1, nN*, then | fn(xn) – 0 | =

2

1
, hence

the condition in proposition 3.3. can not be satisfied with the same rank
n0() at all xDc . A similar behavior takes place in the complex case, when
D denotes the closed unit disk in C.

On the other hand, the restrictions fn : [0,] R, and gn : [ – , ] R, of

the above examples, where 0 <  < 1, show that the rank n0() may happen
to be valid for all xDc. It is easy to see that any other restrictions to
compact subsets of Dc have similar properties. In the complex case, the
functions fn and gn shall be restricted to closed disks D = z{ C: }z ,

or to other compact subsets of Dc.
In order for us to distinguish such cases, we will introduce other types of

convergence as follows:
3.6. Definition. Let (fn) be a sequence of functions fn : D , which is
point-wise convergent to  :Dc (remember that  means either R or C).

We say that (fn) is uniformly (u-) convergent to  iff
 )(0 0 nε N such that n> )(0 n  | fn(x) – (x)| <  at any xDc.

In this case we note 
cD

u
nf  , 




n

u
lim fn , etc.
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If fn 
u

 only on arbitrary compact sets KDc , but not necessarily
on Dc , then we say that (fn) is almost uniformly (briefly a.u.-) convergent to

function . In this case, we note  
cc D

a.u.
nn

nD

ua
ff 


,lim

..
, etc.

3.7. Remarks. a) In the definition of the uniform (and the almost uniform)
convergence we already assume the p-convergence, since it furnishes the
limit function . More than this, any u-convergent sequence is also a.u.-
convergent. In fact, if a rank n0() is good for all the points of Dc, then it is
good for all xK Dc too. Therefore, we say that the uniform convergence
is stronger than the a.u. one, which, at its turn, is stronger than the point-
wise one, i.e. the following implications hold:

u-convergence a.u.-convergence p-convergence.
b) In the case of a series of functions, besides the point-wise, uniform, and
almost uniform convergence, other nuances of convergence are frequently
taken into consideration, e.g. the absolute and the semi-convergence. These
details are omitted here because of their strong analogy with the numerical
series in both R and C.

c) The condition of uniform convergence may be formulated without
special reference to the variable x, as for example if the involved functions
are bounded (continuous, etc.), and the sup-norm makes sense. More
exactly, the sequence (fn) is u-convergent to  on Dc iff

 )(0 0  n N such that n > n0()  ||fn – ||< .

For this reason, ||f|| = sup{|f(x)| : xDc } is said to be norm of the uniform
convergence, or simply u-norm. In a similar manner, we describe the a.u.-
convergence in terms of family of semi-norms pK (f) = sup {|f(x)| : xK},
where K denotes a compact subset of Dc .

The completeness of R and C allows us to formulate also the uniform

convergence with no reference to the limit function, by analogy to theorem
3.4, concerning the point-wise convergence, namely:
3.8. Theorem. (The general Cauchy’s test of uniform convergence) For a
sequence (fn) to be uniformly convergent to  on Dc it is necessary and
sufficient that

 )(0 0  n N such that m, n > n0 ()  | fm(x) – fn(x) |< 

at any xDc (when we say that (fn) is uniformly fundamental, or Cauchy).

Proof. If n
n

u
f


 lim , then the u-Cauchy condition follows from

|fm(x) – fn(x) | |fm(x) –  (x) | + | (x) – fn (x) | .
Conversely, if (fn) is uniformly Cauchy on Dc , then it also is point-wise

Cauchy (as in theorem 3.4). Consequently, there exists n
n

p

f


 lim on Dc .
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We claim that n
n

u
f


 lim too. In fact, for any ε >0, let n0(ε) N be such

that at any xDc we have
m, n > n0 ()  | fm(x) – fn(x) | < / 2 .

On the other hand, each xDc determines a rank m0(x, )N, such that

(because of the point-wise convergence)
m > m0(x, )  | fm(x) –  (x) | < / 2

at any xDc . So we may conclude that for any  > 0 there exists n0() N

such that (eventually adjusting m up to x) we have
|fn(x) –  (x) | |fn(x) – fm(x) | + |fm(x) –  (x) | <  ,

whenever m > max {n0(), m0(x, )}. Consequently, (fn) is u-convergent to
function  on Dc . }

In spite of its generality, it is quite difficult to apply the Cauchy’s test.
However, it has many practical consequences, as for example the following
corollaries 3.9, 3.10 and 3.11. More than this, we are especially interested
in criteria for u-convergence, since the p-convergence immediately reduces
to numerical series.
3.9. Corollary. (The Weierstrass’ test) Let  nf be a series of real or

complex functions fn:D , and let  na be a series of real numbers. If

1.  na is convergent, and

2. | fn(x) |an holds at any xD, and for all nN,

then  nf is uniformly (and absolutely) convergent on D .

Proof. The sequence of partial sums is fundamental, because
| fn(x) + fn+1(x) + … + fn+m(x) |  an + an+1 + … + an+m

holds at any xD. }

3.10. Corollary. (The Abel’s test) Let   nn gf be a series of functions

defined on D R, where fn :D  and gn :D R for all nN. If

1. the series  nf is uniformly convergent on D , and

2. the sequence (gn) is bounded and monotonic on D,
then also the initial series is uniformly convergent on D .
Proof. If we note σ0 = fn , …, σm = fn + … + fn+m , etc., then according to 1,
it follows that | σ m | < ε holds for all m, whenever n is sufficiently large. In
addition, we have:

fn = σ0

fn+1 = σ1 – σ0

……………………………..

fn+m = σm – σm –1 , etc.,
so that the sum in the Cauchy’s general test becomes:
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fn gn + … + fn+m gn+m =
= σ0 gn + (σ1 – σ0)gn+1 + … + (σm – σm – 1)gn+m =

= σ0(gn – gn+1) + … + σm – 1(gn+ m – 1 – gn+m) + σm gn+m .
Because all the differences (gn – gn+1), …, (gn + m – 1 – gn+m) have the same
sign (take separately +1 and –1, if easier), it follows that the inequalities

| fn(x) gn(x) + … + fn+m(x) gn+m(x) |
 ε | gn(x) – gn+m(x) | + | σm(x) gn+m(x) | 

)()()()( xgxxgxg mnmmnn     ε (| gn(x) | + 2| gn+m(x) |)

hold at any xD . Thus it remains to use the boundedness of the sequence
(gn), which assures the existence of M > 0 such that | gk(x) | < M holds at
any xD, for sufficiently large n, and arbitrary m N. }

3.11. Corollary. (The Dirichlet’s test). Let   nn gf be a series of

functions defined on D R, where fn :D  and gn :D R for all nN,

and let sn be the partial sums of the series  nf . If

1. K > 0 such that | sn(x) |K at any xD, and for all k in N (i.e. the

sequence (sn) is equally bounded on D ), and
2. the sequence (gn) is monotonic and u-convergent to 0 on D ,

then   nn gf is u-convergent on D too.

Proof. Similarly to the proof of the above corollary, replacing
fn = sn – sn – 1

……………...
fn + m = sn + m – sn + m – 1

in the sum involved in the general Cauchy’s test, we obtain:
fn gn + … + fn+m gn+m =

= (sn – sn – 1) gn + (sn+1 – sn) gn+1 + … + (sn+m – sn+m – 1) gn+m = – sn -1 gn +
+ sn(gn – gn+1) + sn+1(gn+1 – gn+2) + … + sn+m -1 (gn+m -1 – gn+m) + sn+m gn+m.
Now, let ε > 0 be arbitrary, and n0(ε)N be the rank after which (i.e. for

all n  n0(ε)) we have | gn(x) | < ε /4K at any xD. Because n + m  n0(ε)
also holds for all mN, it follows that

| fn(x) gn(x) + … + fn+m(x) gn+m(x)| 
 | sn–1(x) gn(x) | + K | gn(x) – gn+m(x) | + | sn+m(x) gn+m(x) | 

 2K ( | gn(x) | + | gn+m(x) | )  ε ,
hence   nn gf is uniformly Cauchy. }

3.12. Remark. As a general scheme, the notion of convergence shall be
based on some topology of the space wherefrom the terms of the sequences
are taken. In particular, the fact that x is a point of convergence can be
expressed in terms of a semi-norm on F (D, R), namely px(f) = | f(x) |.

More exactly, (fn) is convergent to  at xD iff
n

lim px ( fn –  ) = 0.
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Similarly, the u-convergence frequently makes use of sup – norm, and
the a.u. convergence is described by the family of semi-norms pK , already
mentioned in remark 3.7.c. Naturally, it is quite difficult to identify such
structures for other types of convergences. For example, the problem of
introducing a topology on F (D, R) such that the corresponding

convergence carries (preserves, or transports) the property of continuity
from the terms fn of the sequence to the limit  , is (we hope completely)
solved in [PM2] and [PM3], but many other cases remain open.

Sequences like (fn) in the above remark 3.5 show that the point-wise
convergence is too weak for carrying the continuity from the terms to the
limit (i.e. each fn is continuous while  isn’t). The following theorem
points out that the uniform convergence assures the transportation of the
continuity from term functions to the limit function. Because the notions of
continuity, derivative and integral are not yet analyzed in the complex case,
the rest of this section refers to real functions of real variables. Later on, we
will see that these properties remain valid in the complex framework.

3.13. Theorem. If



n

u
lim fn on Dc R, and the terms fn : D R are

continuous on Dc , then  is also continuous on Dc .
Proof. Let us fix x0  Dc, and  > 0. To prove the continuity of  at x0 , we
have to find δ > 0 such that | (x) – (x0) | <  be valid whenever xDc

and | x – x0 | < δ. For this purpose we primarily consider the rank n0(),
furnished by the u-convergence of (fn), and choose some n > n0() such that
| fn(x) – (x) | < /3 holds at any x  Dc, including x0 . We claim that the
continuity of fn at x0 yields the desired δ > 0. In fact, because the inequality

|fn(x) – fn(x0)| < /3
holds at any x  Dc whenever | x – x0 | < δ, it follows that

| (x) – (x0) | < | (x) – fn(x) | + | fn(x) – fn(x0) | + | fn(x0) – (x0) | <  ,
i.e.  is continuous at x0 . }

A similar result refers to the sequence of derivatives:
3.14. Theorem. If (fn) is a sequence of functions fn : D R, such that :

1. 
p

nf f on Dc ,

2. each fn is derivable on Dc ,

3. there exists g
u
 lim fn

/ on Dc ,
then f is derivable on Dc , and f / = g.
Proof. For any x0 , x  Dc, we obviously have:
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)()(
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0

0 xg
xx

xfxf
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 + )()( 00

' xgxfn  .

Because the last two moduli in the above inequality can be easily made
arbitrary small by acting on n and | x – x0 |, the key problem is to show that

0

0

0

0 )()()()(

xx

xfxf

xx

xfxf unn









.

In fact, this sequence is u-Cauchy, since according to the Lagrange’s
theorem we have

0

0

0

0

0

0 ))(())(()()()()(

xx

xffxff

xx

xfxf

xx

xfxf nmnmnnmm














=

= (fm – fn)
/ (x) = fm

/(x) – fn
/(x),

where x is lying between x0 and x. On this way we reduce the problem to
the uniform convergence of the derivatives.

The rest of the proof is routine. }

Finally, we have a rule of integrating term by term:
3.15. Theorem. Let (fn) be a sequence of functions fn : D R, D  R, and

let Dc be its domain of convergence. If
1. each fn is continuous on Dc, and

2. 
u

nf f ,

then f is integrable on any interval [a, b]  Dc , and





b

a

n
n

b

a

dxxfdxxf )(lim)( .

Proof. According to theorem 3.13, f is continuous on Dc, hence it is also
integrable on any interval [a, b]  Dc. If  > 0 is given, then hypothesis 2

assures the existence of n0()N such that | fn(x) – f(x) | <  / (b – a) at any

x[a, b], whenever n > n0(). Consequently, we have

   
b

a

n

b

a

b

a

n dxxfxfdxxfdxxf )()()()(

 



b

a

b

a

n dx
ab

dxxfxf 


)()( ,

which proves the last assertion of the theorem. }

3.16. Remarks. a) The above theorems 3.13, 3.14 and 3.15 lead to similar
properties of the series of functions. They are omitted here because usually,
formulating the corresponding statements and proving them shouldn’t raise
problems (however recommended exercises).
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b) Theorems 3.13, 3.14 and 3.15 from above remain valid under the
hypothesis of almost uniform convergence. The proofs shall be slightly
modified by putting forward some compact sets. Most simply, in theorem
3.15, [a, b] already is a compact set. Similarly, sequences like (gn) from the
above remark 3.5. show that the uniform convergence is not necessary to
assign continuous limits to sequences of continuous functions.

In addition, other hypotheses can be replaced by weaker conditions
without affecting the validity of these theorems. For example, theorem
3.15, concerning the integrability, remains true if we replace the continuity
(hypothesis 1) by the weaker condition of integrability. Generally speaking,
one of the most important problems in studying the convergence in spaces
of functions is that of identifying the type of convergence, which is both
necessary and sufficient to carry some property from the terms to the limit.
A contribution to this problem, which concerns the property of continuity,

can be find in [PM1] and [PM2]). The key step consists in formulating the
adequate type of convergence, namely:
3.17. Definition. The sequence (fn) of functions fn : DR, where DR

and nN, is said to be quasi-uniformly (briefly q.u.) convergent on AD

to a function f : AR, if

thatsuchthatsuch
xVnnnAx n )(0 0000 V


NN

])()()[(  xfxfVx nn .

If so, we note n

uq

A
ff lim

..

 , ff
uq

A
n

..

 , etc.

We mention that the q.u. convergence is a topological one, i.e. it
corresponds to a particular topology on F (D, R), in the sense of [KJ],

[PM2], etc. To place the q.u. convergence among other convergences, we
may easily remark that

u. convergence  q.u. convergence  p. convergence.
Simple examples show that the converse implications fail to be generally

valid (see also [PM1], etc.):
3.18. Examples. a) The sequence (fn), where fn : [0, 1]R, for all nN,

)exp()( 2xnxfn  , is point-wise but not q.u. convergent on [0,1] to










]1,0(0

01
)(

xat

xat
xf .

b) The sequence (gn), where gn : [0, 1]R, for all nN, gn(x) = xn(1 – xn),

is q.u. but not u. convergent to the null function on [0, 1].
3.19. Theorem. Let the sequence (fn) of functions fn : DR, where DR

and nN, be point-wise convergent on AD to a function f : AR. In

addition, we suppose that each function fn is continuous on A. Then the
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limit function f is continuous on A if and only if the convergence of the
sequence (fn) is quasi-uniform on A.

Proof. Let us suppose that ff
uq

A
n

..

 , and let us choose some x0A. To show

that f is continuous at x0 , let  > 0 be given. According to definition 3.17,
there is some n0 N, such that for each n > n0 we can find a neighborhood

Vn V (x0) such that
3

)()(  xfxfn holds at each x  Vn (in particular

at x0 too). Because fn is continuous at x0 , there is some Un V (x0) such that

3
)()( 0

 xfxf nn holds at each x  Un . If we correspondingly fix a

rank n > n0 , then W = Un Vn  V (x0) doesn’t depend on n. In addition, all
these inequalities hold at each x  W. By putting them together, we obtain

 )()()()()()()()( 0000 xfxfxfxfxfxfxfxf nnnn ,

which proves the continuity of f at x0A.
Conversely, let us say that f is continuous at each x0A. More exactly,

3
)()()[( 0

)(0 0







xfxfUxthatsuch
xU V

.

A similar condition holds for fn , i.e.

3
)()()[( 0

)(0 0







xfxfUxthatsuch nnn
xU n V

.

Finally, the convergence of numerical sequence (fn(x0)) to f (x0) means that

3
)()([ 000

0 0







xfxfnnthatsuch n
n N

.

If we note Vn = Un U V (x0), then, at any x  Vn , we have

 )()()()()()()()( 0000 xfxfxfxfxfxfxfxf nnnn .

Consequently, ff
uq

A
n

..

 . }

3.20. Remark. a) So far we have investigated how particular types of
convergences may carry some good properties (like continuity, derivability,
and integrability) into similar good properties. To complete the image, we
mention that the limiting process in sequences and series of functions may
transform bad properties into worse, although the uniform and absolute
(i.e. the strongest) convergence is assured. This fact is visible in the
examples of continuous but nowhere derivable functions, which are limits
of continuous or piece-wise derivable functions. One of the first examples
of this type (due to K.W.T. Weierstrass) is the sum w of the series

w(x) = 


0

)cos(
n

nn xba  ,

where a(0, 1) and bN is odd, such that ab > 1 + (3 π /2).
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Another, perhaps more “popular” example (due to B.L. van der Waerden),
starts with the periodical prolongation, noted f : R  R , of the modulus

 : [–1/2, +1/2]  R , and realizes the so-called condensation of the

singularities (see [FG], [G-O], etc.) by the summation of the series








0

)4(4
n

nn xf .

b) From another point of view, we have only considered that a sequence or
series has been given, and the task was to study the existence of the limit
functions, and their properties. The converse process is also very useful in
practice, namely starting with some function (which for example is to be
evaluated or approximated) we need a sequence (or series) that converges
somehow to this function. When the process involves series we use to say
that we develop the given function in a series. An important type of such
developments consists of Taylor series, which will be discussed during the
rest of this section. This type of series is intensively used in the concrete
evaluation of the functions, including the elementary ones. The upcoming
values are usually put in trigonometric, logarithmic, and other tables, or,
most frequently in our days, worked by computer techniques. These series
are equally important from a theoretical point of view, since they play the
role of definitions of the complex functions, operator functions, etc.

The simplest case of Taylor series involves polynomials.
3.21. Proposition. If P(x) = a0 + a1 x + a2 x2 + … + an xn is a polynomial
function, and x0R is fixed, then the equality

P(x) = P(x0) + n
n

xx
n

xP
xx

xP
)(

!

)(
...)(

!1

)('
0

0
)(

0
0 

holds at each x R . In particular, the coefficients have the expressions

a0 = P(0), a1 =
!1

1
P / (0), … , an =

!

1

n
P (n)(0),

where P / up to P (n) represent the derivatives of P.
Proof. We write the polynomial in the form

P(x) = b0 + b1 (x – x0) + … + bn (x – x0)
n ,

and we identify the coefficients. By repeated derivation in respect to x, and
the replacement of x = x0 , we obtain

b0 = P(x0), b1 = P / (x0), …, n! bn = P (n)(x0) ,
which lead to the announced relations. }

Of course, the above equality is no longer valid for other than polynomial
functions. However, in certain circumstances we can give approximating
polynomials of this form, according to the following result:
3.22. Theorem. Let I be an interval of R, and let function f : I R be n+1

times derivable on I . If x0 is fixed in I, then the equality
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f(x) = f(x0) +  ...)(
!2

)("
)(

!1

)(' 2
0

0
0

0 xx
xf

xx
xf

+ 


 
x

x

n
nn

n

dt
n
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tfxx

n

xf

0

!

)(
)()(

!

)( )1(
0

0
)(

holds at any xI.
Proof. We may reason by induction on nN. In fact, the case n = 0 reduces

to the obvious relation

f (x) = f (x0) + 
x

x

dttf

0

)(' .

If the formula is supposed to be valid up to n – 1, then verifying it for n,
means to prove the equality:
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By evaluating the difference of these two integrals we obtain:

   
 dttxtftxtnf

n
n

x

x

nn 1)1()( )()()()(
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1
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  )()(
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1
)()(

!

1
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)(
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)(

0
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dttftx
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d

n
nn

x

x

nn   ,

which achieves the poof. }

3.23. Definition. If a function f : I R is n times derivable, and x0 I ,

then the polynomial function Tn : R R, expressed by

Tn (x) = f (x0) + n
n

xx
n

xf
xx

xf
)(

!

)(
...)(

!1

)('
0

0
)(

0
0 

is called Taylor polynomial of degree n, attached to f at x0 .
The expression of f (x), established in theorem 3.22, is called Taylor

formula. It is easy to see that these formulas represent extensions of the
Lagrange’s theorem on finite increments.

The difference Rn = f – Tn is called Taylor remainder of order n, of f at x0.
In particular, if f is n+1 times derivable, then the remainder expressed by

the integral in theorem 3.22, i.e.

Rn (x) = 


x

x

n
n dt

n

tx
tf

0

!

)(
)()1(

is called remainder in integral form.
Because sometimes we need other forms of the remainder, it is useful to

know more results similar to theorem 3.22:
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3.24. Theorem. Let function f : I R be n+1 times derivable on I, and let

x0 I be fixed. For each xI there exists at least one point x (depending
on x), between x and x0 , such that the following equality holds

f (x) = f (x0) +

 n
n

xx
n

xf
xx

xf
xx

xf
)(

!

)(
...)(

!2

)("
)(

!1

)('
0

0
)(

2
0
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0

1)0(
)!1(

)()1(






 nxx
n

x
nf 

.

Proof. Let E : I R be a function for which the equality

f (x) = f (x0) +

 n
n

xx
n

xf
xx

xf
xx

xf
)(
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)!1(

)( 


 nxx
n

xE

holds at any x I . Since f is n+1 times derivable, it follows that E is simply
derivable on I . Let us suppose that x0 < x , and define  : [x0 , x] R by

(t) = f (t) +

1
)(

2 )(
)!1(

)(
)(

!

)(
...)(

!2

)("
)(

!1

)(' 


 nn
n
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.

We claim that  is a Rolle function on [x0, x] (i.e. it satisfies the
conditions in the Rolle’s theorem, well-known from lyceum), namely:
1.  is derivable on (x0, x) because f is n+1 times derivable on I  (x0, x),
2. (x) = f (x) = (x0).
According to the conclusion of the Rolle’s theorem, there exists x (x0, x)
such that  / (x) = 0. Taking into account that

/ (t) = nn
n

tx
n

xE
tx

n

tf
)(

!

)(
)(

!

)()1(




,

it follows that E(x) = f (n+1)(x). }

3.25. Remark. The remainder from theorem 3. 24, which involves the
derivative f (n+1)(x), i.e.

Ln (x) = )1(

)!1(

1 


nf

n
( x)(x – x0)

n+1

is referred to as the Lagrange’s remainder of f at x0 .
Other types of remainders are possible , e.g. the Cauchy’s one

Cn(x) = 1
)1(

)1(
!

)( 


 nn
n

x
n

xf



,

where (0, 1) depends on x and n, and the list continues.
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All these remainders, and particularly Rn, and Ln and Cn represent
different forms of the same quantity. In particular, Ln results from Rn by the
following generalized mean formula concerning the integral of a product:
3.26. Lemma. If ,  : [a, b]  R are continuous functions, and  does

not change the sign on [a, b], then there exists  [a, b] such that

 
b

a

b

a

dttdttt )()()()(  .

Proof. Since  is continuous, and [a, b] is compact, there exist
m = inf {(x): x[a, b]} and M = sup { (x): x[a, b]}.

To make a choice, let us say that  0. In this case, the inequalities
m  (t)  (t) (t)  M (t)

hold at any t[a, b], and the monotony of the integral gives

m   
b

a

b

a

b

a

dttMdtttdtt )()()()(  .

The searched  is one of the points where  takes the intermediate value
represented by the quotient of these integrals, i.e.

() =

1

)()()(































b

a

b

a

dttdttt  .

Similarly, we treat the case  0. }

3.27. Proposition. Let function f : I R be n+1 times derivable on I.

1. If x0 I is fixed, then for any xI there exists (at least one) point x

between x0 and x such that Rn(x) = Ln(x), and
2. If x0 = 0, then there exists (0, 1) such that Rn(x) = Cn(x) .

Proof. In order to obtain the first equality, namely
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we may apply the previous lemma to the particular pair of functions

(t) = f (n+1)(t) and (t) =
!

1

n
(x – t)n

on [x0, x] if x0  x, respectively on [x, x0] if x  x0.
The other equality, i.e. Rn(x) = Cn(x), follows by changing the variable in

the integral remainder. In fact, if we put t =  x , then Rn(x) becomes
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n
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tf nn

x nn
n .

The usual mean formula furnishes the searched  (0, 1). }
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It is useful to know several variants of remainder because it may happen
that only one of them be adequate to the concrete problem. In particular,
the Cauchy’s form is well fitting to the following binomial development:
3.28. Example. The equality

(1 + x) = 1 + nx
n

n
xx

!

)1)...(1(
...

!2

)1(

!1
2 







+ …

holds at each x(–1, 1) in the sense of the absolute and a.u. convergence,
for arbitrary R.

In fact, function f : (–1, )R , of values f (x) = (1 + x), is infinitely

derivable, and for any nN we have:

f (n)(x) = (– 1) … (– n + 1) nx  )1( .

Consequently, the following Taylor formula makes sense

(1 + x) = 1 + nx
n
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+ Cn(x),

where Cn(x) represents the Cauchy’s remainder, i.e.

Cn(x) = 1
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On the other hand, the D’Alembert test in limiting form, shows that
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is an absolutely and point-wise convergent series on (–1, 1), because
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whenever x < 1. This convergence suggests that in the Taylor formula we

have Cn 
..ua

0 on (–1, 1). To prove this fact, we write

Cn(x) =
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and we remark that an  0 as the general term of a similar series for  – 1;

b is bounded, namely 11 )1()1(     xxbxx ; and 0 < cn < 1,

since 0 < 1–  < 1 +  x reduces to  (1 + x) > 0. More precisely, these
properties of an, b, and cn hold uniformly on any compact set K (–1, 1)
since they are implicitly valid at that point x0 K, where we have

0x = max { xx : K}.
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We mention that some particular values of R correspond to important

developments. For example, integrating and deriving in the developments

of 1)1(  x , m x1 , etc., we may obtain many other formulas, like the

developments of )1ln( x , (1 + x) – 2 , etc. (see also the final list).

In the particular case N, the above binomial developments reduce to

the finite sums of the Newton’s formulas, i.e. Cn(x)  0 for enough large n,
and the convergence is obvious.

The convergence at x = + 1 has been analyzed in II.2.32.
3.29. Application. Besides approximation problems, the Taylor formulas
are useful in the study of the local extremes. In fact, if f CR

2 (I) takes an

extreme value at x0 , then f / (x0) = 0, hence

f (x) – f (x0) = )("
2
1

xf  (x – x0)
2 .

Consequently, we have to distinguish two cases, namely:
a) If f //(x0) 0, then the increment f (x) – f (x0) preserves the sign on some

neighborhood of x0, hence x0 is an extreme point, and respectively
b) If f //(x0) = 0, but there exists f ///(x0)  0, then x0 is not extreme point any

more (and we call it inflexion point).
In the more general case, when several derivatives vanish at x0 , the result

depends on the parity of the first non-null derivative, namely:
1. If f /(x0) = f //(x0) = … = f (2p – 1)(x0) = 0 and f (2p)(x0)  0, then x0 really

is an extreme point;
2. If f /(x0) = f //(x0) = … = f (2p)(x0) = 0 and f (2p+1)(x0)  0,then x0 is not

an extreme point (but only inflexion point).
If f has derivatives of any order n, on D, and the remainder tends to zero

when n  (as in example 3.23), it is more advisable to speak of Taylor
series instead of Taylor formulas, according to the following:
3.30. Definition. Let function f : I R be infinitely derivable on I , i.e. the

derivatives f (n)(x) exist at any xI and for any nN, (which is briefly noted

f  
RC (I )). If x0 I is fixed, then the series

f (x0) + ...)(
!

)(
...)(

!1

)('
0

0
)(

0
0  n

n

xx
n

xf
xx

xf

is called Taylor series attached to f at x0 . If this series is convergent to f,
we say that f can be developed in Taylor series around x0 . In the particular
case when x0 = 0, some people call it Mac Laurin series.
3.31. Remark. The terms of Taylor series are monomials, powers of x – x0,
and the partial sums are polynomials. As usually, the main problem about
Taylor series concerns the convergence, generally expressed by Rn0.
This time it is completed by another question, namely: ”Is the Taylor series
attached to f at x0 convergent to the same f on a neighborhood of x0 ?”.
The answer is generally negative, like in the following case.
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3.32. Example. Let function f : RR be expressed by

f (x) =










0xif0

0xif
2/1 xe

.

This function is infinitely derivable on R and f (n)(0) = 0 for all nN, so

that the attached Mac Laurin series is identically null, hence u-convergent.
However, excepting x = 0, we have f (x)  0.

The equality holds if the derivatives are equally bounded on I , i.e.

3.33. Theorem. Let f  
RC (I ), and let x0 I . If there exist a neighborhood

V  I of x0 , and a constant M > 0 such that the inequalities
| f (n)(x) | < M

hold at any x V and for any nN, then the Taylor series attached to f at x0

is u-convergent to f on V .
Proof. Without losing generality, we may suppose that

V = {xI : | x – x0 | < }
for some  > 0 . By maximizing the Lagrange’s remainder on V , we obtain
the inequality

| Rn (x) | =
)!1()!1(

)( 1
1

0

)1(











n
Mxx

n

f n
nx

n


,

which realizes the comparison of | Rn(x)| with the general term of the a.u.-

convergent series Me . Consequently, Rn 
u

0 on this neighborhood.

We mention the following direct consequence of this theorem:
3.34. Corollary. The Mac Laurin (and generally Taylor) series attached to
the functions exp, sin, cos, sinh, and cosh are absolutely and almost
uniformly convergent on R to the same functions.

Proof. All these functions have equally bounded derivatives on the set  K,
where K R is compact, and ]1,1[ . More exactly,

])()(,)[( )(

0]1,1[

MxfnKx

thatsuch

n

MKcompact






N

R





Consequently, we may apply theorem 3.33 at x0 = 0. }

Because the developments of the real functions will be starting points
(i.e. definitions) in the complex analysis, we end this section by mentioning
the most remarkable ones, which refer to some elementary functions. The
reader is kindly advised to learn them by heart.
3.35. List of developments. The following real functions have a.u. and
absolutely convergent Mac Laurin series on the mentioned domains:
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1) The exponential function, on R:

ex = ...
!

...
!2!1

1
2


n

xxx n

2) The circular trigonometric sine, on R:

sin x = ...
)!12(

)1(...
!5!3

1253







p

xxx
x

p
p

3) The circular trigonometric cosine, on R:

cos x = 1 – ...
)!2(

)1(...
!4!2

242


q

xxx q
q

4) The hyperbolic sine, on R:

sinh x = x + ...
)!12(

...
!5!3

1253







p

xxx p

5) The hyperbolic cosine, on R:

cosh x = 1 + ...
)!2(

...
!4!2

242


q

xxx q

6) The binomial function, on (–1, 1):

(1 + x) = 1 + ...
!

)1)...(1(
...

!2

)1(

!1
2 





 nx

n

n
xx



where α is arbitrary in R.

7) The elementary fraction, on (–1, 1):

x1

1
= 1+ x + x2 + … + xn + …

8) The natural logarithm, on (–1, 1):

ln (1 + x) = x – ...)1(...
32

1
32

 

n

xxx n
n

9) The mth root, on (–1, 1):
 

...
!

)1(1)...1(
...

!2

1
11 2

2






 n

n
m x

mn

mnm
x

m

m

m

x
x

10) The inverse trigonometric function arctg, on (–1, 1):

arctg x = x – ...
12

)1(...
53

1253







n

xxx n
n

Of course, the list is to be completed by many other expansions
depending on the concrete searched problem.
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PROBLEMS § II.3.

1. Find the domains of convergence, the limit functions, and the types of
convergence (namely point-wise, uniform or almost uniform) of the
following sequences of functions:

a) fn(x) = arcsin n x ; b) gn(x) =


2
arctg n x ;

c) un(x) =
n

n

x

x
21

; d) vn(x) =
n

n

x

xxx





1

...1 2

.

Replace x R by z C in the last two examples, and analyze the same

aspects concerning convergence.
Hint. a) Because fn : [–1/n, 1/n] R, the sequence (fn) makes sense only on

D ={0}, where it reduces to a convergent numerical sequence.

b) Dc = R, and
p

n
n

xg 


)(lim sign x. The convergence is not almost uniform

(hence also not uniform) since the limit is not continuous.
c) Dc = R \ {–1}, and the limit function is (only point-wise)










 1xif0

1xif2/1
)(lim

p

n
n

xu .

d) Dc = R \ {–1}, and the limit is (only point-wise)
























.1)1(

1

1)1(

)(lim

1

1

xifxx

xif

xifx

xv
p

n
n

In the complex case we have Dc = {z C : | z |  1}{1}, and we shall

replace + R by  C .
2. Justify the uniform convergence of the following series of real functions
(of real variables):

a) 


1
2

cos

n n

nx
; b) 



1

sin

n n

nx


,  > 1;

c) 


1

;cos
1

n

nx
n

d) 


1

;sin
1

n

nx
n

e) 





1

)sincos(
n

nn nxbnxa , where the numerical sequences (an) and

(bn) decreasingly tend to 0.
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Hint. The problems a) and b) are solved by the Weierstrass’ test since the

series  n/1 is convergent whenever  > 1. The other examples can be

studied by the Dirichlet’s test, because a finite sum of sines and cosines is
bounded, e.g.

2
sin

1

2
sin2

)
2

1
cos(

2
cos

sin
1 xx

xn
x

kx
n

k







.

3. Show that the sequence of functions fn : D R, where

fn(x) = xn – 1 +
)1(1

)1(

xn

xn




,

is convergent to 0 in the following manner:
a) point-wise but not almost uniformly if D = [0, 1], and
b) almost uniformly but not uniformly if D = [0, 1).

Analyze the same problem in a complex framework, by taking

D = }1:{)1,0(
.

 zzS
def

C .

Hint. Take x = 1 and x 1 separately. Evaluate | fn(x) – 0 | at x = 1 –
n

1
,

| fn(x) | = | (1 –
n
1 )n –

2
1 | >

2
1 –

e
1 > 0 .

The difference between the two cases rises because [0, 1] is compact, while
[0, 1) isn’t. At the same time, for any compact set K [0, 1), the nearest
point to 1 is x0 = sup K K .

The complex case is similar, but a clear distinction between | z | = 1 and z
= 1 is necessary.
4. Let the functions fn : R R be expressed by:

fn(x) =










.\0

1

QR

Q

xif

xif
n

Show that the sequence (fn) of everywhere discontinuous functions is
uniformly convergent to a continuous limit (i.e. the u-convergence
preserves the good behavior of the terms, not the bad one!).

Construct a similar example of complex functions.
5. Prove that a uniform limit of a sequence of bounded functions is
bounded too. Using the functions fn : (0, 1] R, of values

fn(x) = min {n,
x

1
} ,

show that the a.u.-convergence is not strong enough to transport the
property of boundedness from terms to the limit.

Consider similar functions of a complex variable.
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Hint. If fn 
u

, we may use the inequality |||| ||  – fn || + || fn ||,

where || f || = sup {| f (x) |: xD}. The particularly considered fn are bounded

functions, but the a.u. limit (x) =
x

1
is unbounded .

Take into account that C is not ordered. However, | z |R + , so we may

consider fn : {zC: 0 < | z |  1}  R , of values

fn(z) = min {n,
z

1
} .

6. Derive term by term in the sequence (fn), where fn(x) =
n

nxsin
, at any

xR, and n  1. Similarly discuss the series    nn ff 1 .

Hint. fn 0
u

on R, but ( /
nf ) is not convergent, neither point-wise. The

series is u-convergent to – sin x, while the series of derivatives is divergent
(1.e. the hypotheses of theorem 3.14 are not fulfilled).
7. For any n  2 we define fn : [0, 1] R by the formula

fn(x) =

 
 
 


















.1,xif0

,xif)(

0,xif

2

2122

n
12

n

nnn
xn

xn

Show that fn 0
u

, but 
1

0

)( dxxfn = 1 for all n  2.

Hint. fn(0) = 0, and for any x > 0 there exists nN such that x > 2/n.

Disregarding theorem 3.15, the different results

 



1

0

1

0

))(lim(01)(lim dxxfdxxf n
n

n
n

are possible because the convergence is not almost uniform.
8. For each nN \ {0, 1} we note

Xn = {
n

p
: pN, 0 < p < n, (p, n) = 1},

where (p, n) means the greatest common divisor of p and n. Show that each
function fn : [0, 1]  R , of values



 


,0

1
)(

otherwise

Xxif
xf n

n

is integrable on [0, 1] , but the series  nf is point-wise convergent to a

non integrable function.
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Hint. Each fn , n  2 (and consequently each partial sum sn of the
considered series) has only a finite number of discontinuities at points of
the form

  
...;...,,;...;,,,;,;,; 11

5
4

5
3

5
2

5
1

4
3

4
1

3
2

3
1

2
1

5432


nf

n
n

n

ffff



where they equal 1, hence these functions are integrable on [0, 1]. The
series is point-wise convergent to the function



 


.0

)10(1
)(

herwiseot

,xif
x

Q


9. Using adequate Taylor developments evaluate the sums:

a) 1 – ...
)1(

...
3

1

2

1 1







n

n

b) 1 – ...
14

)1(
...

9

1

5

1







n

n

c) 1 – ...
3)12(

)1(
...

37

1

35

1

33

1
1

1

32













 



n

n

n

d) 3 – ...
4

)2(1
...

4

9

4

3 1

2







n

n

Hint. a) The development of ln(1 + x) is convergent at x = 1, so take x1
in theorem 3.13, applied to example 8 on the list 3.35.
c) Take x = 1 in the function f : (–1, +1] R , defined by the formula

f (x)
..

]1,1(

ua


 x – ...

14

)1(
...

95

1495









n

xxx nn

According to theorem 3.14, the derivative of f is

f / (x) = 1 – x4 + x8 – … + (–1)n x4n + … =
41

1

x
.

Because f (0) = 0, it follows that

f (x) = 


x

dt
t0

41

1
.

d) Replace x2 =
3
1 in

f (x) = x – ...
12

)1(...
53

1253







n

xxx n
n

e) Use the function f : (–1/2, 1/2) R, defined by

f (x) =    

















0 00

1

)21)(1(

1
)2(2)2(1

n n

nnn

n

n

xx
xxx
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10. Use adequate Taylor formula to approximate:
a) sin 33º to five exact decimals;
b) e – 0.01 to three decimals;
c) ln 2 to two decimals;
d) π to two decimals;

e) dte t


1

0

2

to four decimals.

Hint. a) Take x0 = π/6 and h = x – x0 = π/60 in the development of sin.
Since for n = 3 the Lagrange’s remainder is maximized to

| Rn | = 6
4

10sin
!4

x
h

 ,

the searched approximation is

sin 33º 54464.0
2

3

606

1

2

1

602

1

2

3

602

1
32





















.

b) According to the example 3.32, the development of exp (– x –2) is not
useful. Alternatively, we may develop ex around x0 = 0. Because the third
term at x = – 0.01 is 0.00005, and the series is alternate, it follows that the
remainder has a smaller value.
c) Use the series of ln (1 + x) on the list; since it is slowly convergent, other
expansions are recommended.
d) Develop arctg x around x = π/6.
e) Integrate in the development of exp(– x 2 )

f (x)  











x

n

nnua

R

def

n

x

n
dtt

0 0

12..
2

12!

)1(
)exp( .

Because the eighth term of the alternate series at x = 1 in less than the
imposed error, we obtain 0.74681 < f (1) < 0.74685.
11. Find the Mac Laurin developments of the functions:

a) Si(x) = 
x

dt
t

t

0

sin
(called integral sine);

b) u(x) = 


x

dt
t

t

0

cos1
(part of the integral cosine).

Hint. a) Integrating term by term in the series

...
)!12(

)1(...
!3

1
sin 22





p

tt

t

t p
p

we obtain

Si(x) = ...
)!12()12(

)1(...
!33!11

123












pp

xxx p
p
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b) Similarly, integrating the development of
t

tcos1
leads to

u(x) = ...
)!2(2

)1(...
!44!22

242








 qq

xxx q
q

The integral cosine is defined by the improper integral

Ci(x) = 
x

dt
t

t

0

cos
.

We mention the relation Ci(x) = ln x + γ – u(x), where  is the Euler’s

constant  = 










n

nn
ln

1
...

2

1
1lim .

12. Search the following functions for extreme values:

a) f (x) = 2x + 3
3 2x ; b) g(x) = sin x – x ;

c) u(x) = cosh 2x –2x 2 ; d) v(x) = x 5 e x .
Hint. a) f (–1) = 1 is a local maximum, and f (0) = 0 is a local minimum,
even f / (0) does not exist. b) g has infinitely many stationary points xk =
2kπ, kZ, but no local extreme. c) We evaluate u(0) = u / (0) = u // (0) = u ///

(0) = 0 and u(4)(0) > 0, hence 0 is a point of minimum. d) x1 = –5 is a local
minimum, but x2 = 0 is an inflexion point since v(0) = … = v(4) (0) = 0 and
v(5) (0)  0.
13. Identify the type of convergence of the sequence (fn), where the
functions fn : RC take the values

fn () =
n

n
i 











1 .

Hint. According to problem 3.1.8.c, we have

 sincos)(lim
.

if
p

n
n


 R

.

The uniform convergence on [0, 2] and the periodicity of sin and cos do
not assure the uniform convergence of (fn). The analysis of the mentioned
problem shows that the convergence is almost uniform.
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§ II.4. POWER SERIES

It is easy to remark that the partial sums in Taylor series are polynomials,
whose coefficients are determined by the developed function. The power
series generalize this feature, i.e. they are series of monomials. The main
idea is to reverse the roles: Taylor series are attached to a given function,
while power series are used to define functions.

In the first part of this section we study real power series, which provide
a direct connection with the well-known differential and integral calculus
involving real functions of a real variable. In the second part we extend this
study to complex power series, which open the way to a complex analysis.
Finally, we use the method of power series to introduce several elementary
complex functions of a complex variable.

4.1. Definition. Let (an) be a sequence of real numbers, and let x0R be

fixed. The functions series 












 



n

k

k
k

n
n xxaxxa

1
00 )(;)( , briefly noted

  n
n xxa )( 0 , (1)

is called (real, since x, an R) power series. The point x0 is the center, and

the numbers an are the coefficients of the series. The series (1) is said to be
centered at x0 .

Obviously, the entire information about function series, contained in the
previous section, remains valid for power series. In particular, the terms of

a power series, namely the monomial functions n
nn xxaxf )()( 0 , are

defined for all n N, and at all xR. However, the domain of convergence

generally differs from R, as we cam see in several particular cases.

4.2. Examples. a) If an = 1 for all n N, then (1) becomes   nxx )( 0 ,

and we call it geometric series of ratio q = x – x0 . Because











n

k

n
k

n
q

q
xxxs

0

1

0
1

1
)()( ,

and 0lim 


n

n
q if and only if | q | < 1, it follows that the geometric series is

convergent exactly in the interval I = (x0 – 1, x0 + 1). The divergence in the
case 1q is based on the fact that the general term of a convergent series

necessarily tends to zero.
To conclude, the domain of convergence in the case of a geometric series

is the interval I , centered at x0 , of radius 1.
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b) The Taylor series of the exponential function, i.e. 





0

!
1

n

xn
n

ex , is a

power series of coefficients
!

1
nna  , which is convergent at any xR. We

may interpret R like an interval centered at x0 , of infinite radius.

c) The power series   nn xxn )( 0 is convergent only at x = x0 . In fact, if

0xx  , then we can find some n0 (x) N, such that 10  xxn holds for

all n > n0 (x), hence the general term of the series doesn’t tend to zero at
this point. Consequently, the set of convergence reduces to {x0}, which can
also be viewed as an interval centered at x0 , of null radius.

These examples lead us to the conjecture that the set of convergence of
any real power series is an interval, including R and {x0} in this notion. To

prove the validity of this supposition in the most general case, let us note:
n

n
n

a


 lim , (2)

and



















.0

0

1 *







if

if

if

R

R

(3)

The following theorem explains why R is called radius of convergence.
4.3. Theorem. (Cauchy – Hadamard) Each power series (1) is absolutely
and almost uniformly convergent in the interval I = (x0 – R, x0 + R), and

divergent outside of its closure I .
Proof. First we remind that (2) concentrates the following two conditions:

(I) ])[( 0
0 0







n
n

n
annthatsuch

N
, and

(II) 





m
m

m
athatsuch

N0
.

Case a) 0 <  <  . From (I) we immediately deduce that

n
not

nnn
n qxxxxa

.

00 )()(  

holds for all n > n0 . If

 


1
0xx ,

then q < 1, hence the general term of the given series is less than the term
qn of a convergent geometric series. Using the comparison test II.2.12, it
follows that (1) is absolutely and a.u. convergent in the interval

)
1

,
1

( 00








 xxI .
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Because  > 0 is arbitrary, this convergence holds in I too.
To prove the assertion concerning divergence, we use condition (II). Let

us take  > 0 such that  –  > 0, and m N like in (II), so that

m
not

mmm
m pxxxxa

.

00 )()(   .

Consequently, if
 


1

0xx , then the geometric series of ratio p is

divergent, and according to the same comparison test, so is the given power
series. Taking into account that  is arbitrary, divergence holds whenever

Rxx  10 .

Case b)  = 0. Using (I), to each  > 0 and x R there corresponds a rank

),(0 xn  N, such that
nnn

n xxxxa 00 )(   holds for all ),(0 xnn  .

At any x R we may take  > 0 such that

1
.

0  qxx
not

 ,

hence the geometric series of ratio q is convergent. As before, it remains to
use the comparison test.

Divergence is impossible, since (II) is trivial at  = 0.

Case c)  . Instead of (I) and (II), we express 


n
n

n
alim by

(III) Mathatsuch m
m

mM


 N0
.

Consequently,
mmm

m xxMxxa 00 )(  is possible for arbitrary M > 0,

which shows that series (1) is divergent at any 0xx  . }

4.4. Remarks. a) Apart from its theoretical significance, we have to take
the superior limit in (2) whenever infinitely many coefficients of the series

are vanishing. For example, the series 


1

21

n

n
n

x has the coefficients










.120

21

npif

npifn
a p

Because 1lim 


n

n
n , we have R = 1, but n

n
n

a


lim does not exist.

b) In the case 0 <  <  , theorem 4.3. solves the problem of convergence
at any x R, except the endpoints of I, say x1 = x0 – R, and x2 = x0 + R . To

get the complete answer of the convergence problem, it remains to study

the two numerical series: 


0
1

n

n
n xa and 



0
2

n

n
n xa .
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This behavior at the endpoints x1 and x2 is unpredictable, i.e. all the
combinations convergence / divergence are possible. For example,

 Divergence at both x1 and x2 holds for the geometric series 


0n

nx ;

 Convergence at x1 and divergence at x2 hold for 


1

1

n

n
n

x ;

 Divergence at x1 and convergence at x2 hold for 






1

)1(

n

n
n

x
n

;

 Convergence at both x1 and x2 holds for the series 


1

1
2

n

n

n
x .

c) Instead of (2), we may evaluate  using the D’Alembert formula

n

n

n a

a 1lim 


 , (4)

because the existence of the limit in (4) assures the existence of that in (2),
and these limits are equal. Formula (4) is sometimes very useful in practice,
especially when the evaluation of the limit in (2) is difficult. As for
example, we may compare the efficiency of these formulas in the case of
the exponential series







0

!
1

n

n
n

x xe .

The theory of the real power series gas several “weak points”, i.e. there
exist some phenomena that cannot be explained within the frame of real
variables. The simplest ones concern the difference between the domain of
existence (convergence) of the series and that of the sum function.

4.5. Examples. a) The geometric series
2

0

2

1

1

x
x

n

n








has the radius of

convergence R = 1. This is perfectly explained by the fact that it represents

the Taylor series of the function
21

1
)(

x
xf


 , which is not defined at 1 .

However, f makes sense outside of (– 1, + 1), where the series diverges.

b) The alternating geometric series
2

0

2

1

1
)1(

x
x

n

nn








has the same

domain of convergence as before, while its sum
21

1
)(

x
xg


 is defined

on the whole R. In addition, the restriction of the convergence to (– 1, + 1)

is no longer explained since g has no singularities. Drawing the graphs of f
and g is recommended to visualize the situation.
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The explanation is immediate in complex variables, since the complex

function
21

1
)(

z
zh


 cannot be defined at i , and Ri  1 too.

In the second part of this section we’ll see that the study of the complex
power series offers such explanations, and in addition it is similar to the
real case in many respects (pay attention to differences!).
4.6. Definition. Let (an) be a sequence of complex numbers, and let us fix

0z C. The function series 












 



n

k

k
kn zzazza

0
00 )(),( , briefly noted

  n
n zza )( 0 , (5)

is called complex power series centered at z0 .
The coefficients an , as well as the center z0 , may be real numbers, but the

series (5) is essentially complex since z C. To get a quick view of some

domains of convergence we may consider several particular cases.

4.7. Examples. a) The complex geometric series  nz is convergent in the

open unit disc (centered at zero), }1:{)1,0(  zzD C .

b) The “exponential like” series  n
n

z
!

1 is absolutely and a.u. convergent

on the entire complex plane (since z R ! ).

c) The series   nn zzn )( 0 is convergent only at z = z0 .

The general result concerning the domain of convergence of a complex
series makes use of the following simple fact:
4.8. Lemma. If the power series (5) is convergent at some 1z C, then it is

absolutely convergent at any other z C, which is closer to z0 than z1 , i.e.

010 zzzz  .

Proof. If   n
n zza )( 01 is convergent, then 0)(lim 01 



n
n

n
zza , hence

}:)({ 01 N nzza n
n is a bounded set of real numbers. Because we may

reformulate the hypothesis 010 zzzz  by 1
.

01

0 



q

zz

zz not
, we have

n
n

n
n

n
n qM

zz

zz
zzazza 






01

0
010 )()( , where M satisfies the only

condition supM }:)({ 01 N nzza n
n . The comparison of the given

series to the geometric series of (positive) ratio q < 1 shows that (5) is
absolutely convergent at z . }
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By analogy to R, if we accept the entire C and the singletons {z0 } to be

called discs too, then the problem concerning the form of the domain of
convergence of a complex power series is simply solved by the following:
4.9. Proposition. Every complex power series (5) is absolutely and a.u.
convergent in a disc centered at z0 .
Proof. First of all, let us identify the two extreme situations, namely:
a) The series (5) is convergent at each point of a sequence *)( Nnnz , where

nz C and 


0lim zzn
n

. According to the above lemma, the series (5)

is absolutely and a.u. convergent on C.

b) (5) is divergent at any point 0zzn  of a sequence *)( Nnnz , where

nz C and 0zzn  . According to the same lemma, z0 is the unique point

of convergence.
In the remaining cases, there exist z1 , 1C such that (5) is convergent at

z1 and divergent at 1. Using lemma 4.8. again, we establish the behavior of
the series in the interior of the circle

}:{),( 010010. zzzzzzzzCconv  C 

where it is convergent, and in the exterior of the circle
}:{),( 010010. zzzzzzCdiv   C ,

where it diverges. To find out the nature of the series (5) in the remaining
cases, we consider “testing points” in the annulus

}:{),,( 0100101010 zzzzzzzzzzA   C .

If the series converges at some zA, we note it z2 , and we increase the disc
of convergence. By contrary, if the series diverges at this point, we note it
2 , and we use it to decrease the radius of the circle .divC (as sketched in

Fig.II.4.1. below).

R

z0

z1

z2

1


2

Fig. II.4.1.

Re z0

Im z
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By repeating this construction, we obtain an increasing sequence of real
numbers ( | zn – z0 | ), and a decreasing sequence ( | n – z0 | ). In addition, we
can chose them such that   0lim 00 


zzz nn

n
 , hence the number

00

.
limlim zzzR n

n
n

n

not





is uniquely determined according to Cantor’s theorem (e.g. I.2.17). It is
easy to see that (5) is absolutely and a.u. convergent in the open disc

}:{),( 00 RzzzRzD  C ,

and divergent in its exterior { ),( 0 RzD . }

Like in R, the above number R is called radius of convergence, and it can

be evaluated by formulas similar to (2), (3), and (4). More exactly:
4.10.Theorem. (Cauchy – Hadamard) If (5) is a complex power series, for
which we note

n
n

n
a


 lim , (2’)

then its radius of convergence has the value



















.0

0

1 *







if

if

if

R

R

(3’)

The proof is similar to that of theorem 4.3, and will be omitted. }

4.11.Remarks. a) The intervals of convergence I = (x0 – R, x0 + R), in the
case of real power series, also represent discs, in the sense of the intrinsic
metric of R. Consequently, theorem 4.10 extends theorem 4.3 in the same

way as the norm of C extends the norm of R. In particular, if in (5) we have

na R, and  00 xz R, then the interval of convergence for the resulting

real power series is a “trace on R” of the plane disc of convergence, i.e.

 ),(),( 00 RxDRxI R .

b) Following D’Alembert, instead of (2’) we may use the formula

n

n

n a

a 1lim 


 , (4’)

to evaluate the radius of convergence. The only difference between (4) and
(4’) concerns the domain of the modulus, which is R in (4), and C in (4’).

c) Theorem 4.10 gives no information about the nature of (5) on the circle
),(}:{),( 000 RzDFrRzzzRzC  C .

Simple examples put forward a large variety of situations between the two
extreme cases:

 Divergence overall C(z0 , R), as for the geometric series, and
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 Convergence on the entire C(z0 , R), as for the series 


1

1
2

n

n

n
z .

To obtain more information, we need additional hypotheses, e.g.:

4.12. Theorem. (Abel) Let 


0n

n
n za be a complex power series with real

coefficients, which has the radius of convergence R, such that 0 < R <  . If
a0 > a1 R > a2 R2 > … > an Rn > …  0, (6)

then the series is (point wise) convergent at any }{\),0( RRCz .

Proof. Let us first remember another Abel’s theorem (see II.2.6 in complex
form): “If  nz is a numerical series with bounded partial sums, and (n )

is a decreasing sequence of positive (real) numbers, which converges to 0,
then  nn z is a convergent series.” Now, for any nN we may write

nn

n
n

n
n

n z
R

z
Raza 








 ,

where n
nn Ra and

n

n
R

z
z 








 fulfill the conditions of the cited theorem.

In fact, if | z | = R, but Rz  , then the partial sums

 
 

R
z
R

z

R

z

R

z
zs

n
n

n
















1

1
...1)(

1

are equally bounded, more exactly, for any nN we have

 
R

z
zsn




1

2
)( .

Consequently, except z = R, the gives series is convergent on C(0 , R). }

4.13. Remarks. a) Convergence at z = R is neither affirmed nor denied by
theorem 4.12, so it remains to be studied separately. On this way we may
complete the answer concerning the behavior of the series on the whole C.

b) Taking z0 = 0 in theorem 4.12 is not essential. More generally, we can
reduce every qualitative problem concerning power series, including
convergence, to the case, via the translation of z0 to 0.
c) We may use theorem 4.12 to identify more points of divergence on the
frontier of the disc D(z0 , R). For example, if we replace z = k , where

*Nk , in the power series 


1

1

n

n
n

z , then we find out that the series




1

1

n

nk
n
 is divergent at the kth roots of 1.
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4.14. Classes of Functions. It is essential for us to distinguish between the
senses in which we may speak of functions and classes of functions. An
abstract class of functions, e.g. continuous, derivable, etc., is defined by a
specific property, while the concrete employment of a particular class of
functions asks an effective knowledge of the values. For example, we can
uniquely define a function by specifying its derivative t e – t , its value at 0,
and  > – 1, but whenever we want to use this function in practice, we need
its values at different points. For this reason mathematicians have written
plenty of books containing tables of values of some particular functions, as
for example tables of logarithms, sine, cosine, Bessel functions, etc.

During the former stage of the study, we deal with the class of elementary
functions, which is generated by the algebraic functions and function exp.
Any non elementary function is said to be special. More exactly, function f
is called algebraic iff to obtain its values f (x) we have to perform a finite
number of algebraic operations (sum, product, difference, quotient, power,
root). If the calculation of the values f (x) involves infinitely many algebraic
operations, and consequently some limit processes (like in series!), then f
is named transcendental function. In particular, the exponential is the only
transcendental function in the class of elementary functions, since its values
are obtained by summing up the series







0

.

)exp(
!n

x
defn

ex
n

x
.

To be more specific, we mention that the assertion “class X is generated
by the functions f, g, … ” means that besides f, g, … , this class contains
restrictions, compositions, inverses and algebraic operations with them. For
example, due to the Euler’s formulas

2
cos

ixix ee
x


 ,

i

ee
x

ixix

2
sin


 ,

it follows that the trigonometric functions are elementary. This simple case
already shows that the real framework is not sufficient to study functions,
since the trigonometric functions are expressed by complex exponentials.

The initial way of learning functions is usually called geometric, because
of the strong connections to trigonometry, graphs, etc. Whenever we think
of a function as a set of numerical values, we need some rule of computing
these values. Most frequently, the method of introducing the functions by
this computation is called analytic. Simple cases of analytical definitions of
some functions, known from lyceum, involve the primitives that cannot be

expressed by elementary functions (e.g. 
x t dte

0

2

,  4

0
)tan1ln(



dxx , etc.).

Generally speaking, a function is known if we can approximate its values.
Because we naturally prefer to approximate by polynomials, the analytic
method reduces to define functions by power series.
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To conclude this analysis, we have to define the elementary functions in
complex variables, using the analytic method, i.e. by power series.
4.15. Definition. The complex exponential function is defined by







0

..

!

1
exp

n

n
defnot

z z
n

ze . (7)

We similarly define (compare to II.3.35 in R) the circular and hyperbolic

complex trigonometric functions sine and cosine by the power series:













0

12
.

)!12(

)1(
sin

n

n
ndef

z
n

z ;









0

2
.

)!2(

)1(
cos

n

n
ndef

z
n

z ;











0

12
.

)!12(

1
sinh

n

n
def

z
n

z ;







0

2
.

)!2(

1
cosh

n

n
def

z
n

z .

To give a model of how to study the complex elementary functions, we’ll
analyze the exponential in more details. In particular we’ll see that also the
complex trigonometric functions can be expressed by the exponential.
4.16. Theorem. Function exp has the following properties:

1. Its domain of definition is C;

2. 2121 zzzz eee  at all 21, zz C (fundamental algebraic property);

3. zize zi sincos  at all z C;

4.
i

ee
z

iziz

2
sin


 and

2
cos

iziz ee
z


 at all z C (Euler);

5. )sin(cos yiyee xiyx  at all  iyxz C;

6. xz ee  and kye z 2arg  , where  iyxz C and k Z;

7. iT 2 is a period of the function exp.
Proof. 1) The domain of definition for exp is the disc of convergence of the
power series (7). Using (4’), we easily obtain R =  , hence (7) converges
on the whole C.

2) We have to multiply the series of 1ze and 2ze , which are

...
!

...
!2!1

1 1
2
111 

n

zzz
e

n
z and

...
!

...
!2!1

1 2
2
222 

n

zzz
e

n
z .
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According to the Cauchy’s rule, the product power series has the terms

10  ,
!1

21
1

zz 
 ,

!2

)( 2
21

2
zz 

 , and by induction, for all n N,




 





n

k

nknk

n
n

zz

kn

z

k

z

0

2121

!

)(

)!(!
 .

3) We may replace 14 ki , ii k 14 , 124 ki , and ii k 34 , where

k N, in the power series of ize .

4) Add and subtract the previously established relations

zize zi sincos  , and

zize zi sincos  .
5) Combining properties 2 and 3 from above, we obtain the asked relation

)sin(cos yiyeeee xiyxiyx  .

6) Interpret the formula from 5 as trigonometric form of zeZ  .
7) The functions sin and cos in 5 have the period 2. }

4.17. Geometric Interpretation. The complex exponential is a complex
function of one complex variable, hence its graph is a part of C x C  R4 .

Because we cannot draw the subsets of R4 , the method of visualize the

properties of a function on its graph, so useful for real functions, now is not
helpful any more. However, we can give geometric interpretations to the
properties of the complex functions like exp, if we conceive these functions
as transformations of the complex plane into itself. Fig. II.4.2 illustrates
this method in the case of the complex exponential.

z Z
exp

0

1
i

2i

0

1 x Re z=

y Im z=

X = Re Z

Y Im Z=

ar
g

Z
=

1

e

Cartesian coordinates Polar coordinates

Fig. II.4.2

In fact, according to the property 6 in theorem 4.16, the correspondence

C 3  zeZz  C takes the real form R2 3 ),(),( YXyx  R2 , where
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.,2arg

22

ZkkyZ

eYXZ x



The property of periodicity shows that the band

)2,0[)}2,0[:),{( 2   RR yyx

is bijectively carried onto C \ {0}. The other bands, which are parallel to

this one and have the same breadth 2, have the same image.

Another remarkable property is 0ze . It is based on the inequality

0 xz ee ,

which holds at all  iyxz C, respectively at all x R.

The inverse of exp is defined as usually, by reversing the correspondence:
4.18. Definition. The inverse of the complex exponential is called complex

logarithm, and we note it Ln. More exactly, if zeZ  , then z = Ln Z.
The main properties of Ln naturally extend those of ln.

4.19. Theorem. The complex logarithm has the properties:
1. The domain of definition is C \ {0};

2. Ln is a multi-valued function (of type one to many), i.e.
}:)2(arg{ln Z kkZiZZLn  (8)

3. Ln Z1 Z2 = Ln Z1 + Ln Z2 for any Z1 , Z2 C \ {0}.

Proof. 1. The domain of Ln is the image of exp.
2. Ln is multi-valued because exp is periodical. If we note z = x + iy = Ln Z,

then from the relation )sin(cos yiyeeZ xiyx   we deduce that
xeZ  and arg Z = y + 2k

for some kZ. Consequently, x = ln | Z | and y = arg Z + 2k .

3. The equality refers to sets. If 11 ZLnz  and 22 ZLnz  , then 1
1

zeZ 

and 2
2

zeZ  . According to the fundamental property of the exponential,

we have 21
21

zzeZZ  , hence 2121 ZZLnzz  .

Conversely, if 21 ZZLnz , then zeZZ 21 . Let us take 11 ZLnz  , and

note 12 zzz  . Since 01
1  zeZ , relation 2121

21
zzzz eeeZZ   gives

2
2

zeZ  . Consequently, 22 ZLnz  and 21 LnZZLnz  . }

4.19. Remarks. a) Theorem 4.18 suggests we better to write ZLnz than

ZLnz  , which remains specific to the real logarithm. According to (8),

the set Ln Z is infinite, but countable.
b) Using the complex logarithm we can define the complex power

ZLneZ   (9)
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where  C and Z C \ {0}. Obviously, this function is multi-valued too.

In particular, if
n
1 for some }1,0{\Nn , then the complex power nZ

1

reduces to the nth root, which is a set of n numbers. More exactly,
iZiZkZiZZLn

n
k

nnnn eeeeZ
 21111 ]arg[ln)]2(arg[ln 

 , k Z.

Because 2i is a period of the exponential function, it follows that
i

n
k

e
2

takes only n distinct values, which correspond to k = 0, 1, …, n – 1.
c) A similar study of the complex trigonometric functions is left to the
reader. We just mention that the formulas of the real trigonometry remain
valid. In addition, it’s useful to retain the formulas

;sinsinh;sinhsin ziizziiz 

zizziz coscosh;coshcos  ,

which connect the circular and hyperbolic trigonometric functions.
Of course, not all properties of the real trigonometric functions are valid

in complex variables, e.g. sin and cos are not bounded any longer.
A typical problem about numerical series, which can be solved by means

of power series, concerns the evaluation of the sum. The following example
refers to real series, but later on we’ll see that similar techniques, based on
the operations of derivation and integration of the terms, remains valid in
the complex framework.
4.20. Application. Evaluate the sum of the alternating harmonic series

















0

.
...

1

)1(
...

3

1

2

1
1

1

)1(

n

nnnot

nn
s

The solution is based on the fact that s is the particular value, at x0 =1, of
the power series







1

1)1()(
n

n
n

n

x
xf .

Deriving f , we obtain the geometric series

.
1

1
)1()('

0 x
xxf

n

nn


 





By integrating 'f , we find Cxxf  )1ln()( , where 01ln)0(  fC .

So we may conclude that 2ln)1(  fs .
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PROBLEMS §II.4.

1. Find the radius of convergence and the sum of the following real power
series:

a) 0,
0















n

n
x

; b) 









0

12

12
)1(

n

n
n

n

x
; c) 










0

13

13
)1(

n

n
n

n

x
,

then deduce the sum of the numerical series:

a’) 


0n
n

n


, > 1 ; b’) 



 



0 12

)1(

n

n

n
; c’) 



 



0 13

)1(

n

n

n
.

Hint. a) The geometric power series converges at x , hence the radius

of convergence is R =  . The sum is

x

x
xf

n

n















 



0

)( .

Deriving term by term in this series we obtain




















0
2

1
/

)(
)(

n

n

x

xn
xf






.

In particular, if x = 1 < , we find the answer to a’), which is:




0n
n

n

 2
/

)1(
)1(






f .

b) R = 1. To find the sum

)(xg 









0

12

12
)1(

n

n
n

n

x
,

we may first evaluate the derivative

2
0

2/

1

1
)1()(

x
xxg

n

nn


 





,

then integrate, so that Cxxg  arctan)( . Using the value at x = 0 we can

identify 00arctan)0(  gC , and at x = 1 we find the answer to b’):

4
1arctan)1(

12

)1(

0












g
nn

n

.

c) R = 1. Deriving the function h(x) = 









0

13

13
)1(

n

n
n

n

x
, we obtain
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By integration we go back to
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C
x

xxxxh 



3

12
arctan

2

1
)1ln(

6

1
)1ln(

3

1
)( 2 ,

where
123

1
2
1 arctan C follows by taking x = 0. At x = 1 we obtain

6
2ln

3

1
)1(

13

)1(
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h
nn

n

.

2. Find the discs of convergence and study the convergence at the frontier
points of these discs for the following complex power series:

a) 0,
0















n

n
z

; b) 
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12
)1(

n

n
n

n

z
; c) 
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n

n
n

n

z
.

Hint. a) R = |  |, and divergence holds whenever | z | R .

b) R = 1. If we note 2z , then the series becomes 


 0 12n

n

n


. Using

theorem 4.12, it follows that this series converges at any  on the circle of
equation |  | = 1, except  = 1. Consequently, the series in z is convergent
if 1z , except the points z1, 2 = i .

c) R = 1. A reason similar to b) leads to divergence at the cubic roots of –1.
3. Establish the domain of convergence for the series:

a) 






1n

n
n

z
n

in
; b) 



1 !n

n

n

z
; c) 



1 !

)(

n

n

n

nz
; d) 



1 !n
n

n

n

z
.

Hint. a) 0lim 



 n

inn

n
 , hence R =  , i.e. the series converges on C.

b) Similarly to a), Dconv. = C, since 0
!)1(

!
lim 




 n

n

n
 .

c) Applying (4) or (4’) to an = nn / n!, we obtain e
n

n
nn


 !

lim , hence

eR 1 . We may use theorem 4.12 to find out the behavior at the frontier

points. In fact, because e
n
 )1( 1 , the sequence of terms

n

n
n

n
en

n
Ra

!
 is

decreasing, while the Stirling’s formula 12
!

lim 


n
en

n
n

n

n
 shows that

0lim 


n
n

n
Ra . Consequently, possibly except the point ez 1 , this power

series is convergent at the other points where ez 1 .

To clarify the nature of the series at the remaining point ez 1 , we have

to study the convergence of the numerical series
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1 !n
n

n

ne

n
.

With this purpose we reformulate the Stirling’s result by saying that “for
every  > 0 there exists n0N such that the inequalities

  12
!

1 n
en

n
n

n

hold whenever n > n0 “. Using the resulted relation

nen

n
n

n





2

1

!




in a comparison test, we conclude that the series is divergent at ez 1 .

d) From e
n

n
nn


 !

lim we deduce that  = R = 1. The sequence of terms

nn
n

a
!

1


is decreasing, and 0lim 


n
n

a , hence the convergence of the power series

holds when | z | = 1, possibly except z = 1. At this point we have divergence
on account of the relation

nnn n nn

11

!

1
 ,

where n1 is the general term of a divergent series.

4. Function f : (–R, R) R, where R > 0, is defined as the sum of the series

f (x) = a0 + a1 x + a2 x2 + … + an xn + …

where a0 = a1 = 1, and 





1

0
1

n

k
knkn aaa for all n > 1. Show that:

a)
x

x
xf

2

411
)(


 ;

b) n
nn C

n
a 2

1

1


 ;

c) The radius of convergence is R = 41 ;

d) The power series converges to 2 at x = 41 .

Hint. a) If we identify the coefficients of the series
f 2 (x) = b0 + b1 x + b2 x2 + … + bn xn + … ,

which represents the product of the series of f by itself, then we obtain the
relation bn –1 = an . In other words, we have

f 2(x) = a1 + a2 x + a2 x2 + … + an xn –1 + … ,
i.e. x f 2(x) = f (x) – 1. This equation has two solutions, namely
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but f (0) = 1 holds (in limit form) only for
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b) Develop x41 as a binomial series
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and identify the coefficients in the series of f , which becomes
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A simple calculation shows that
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c) 4lim 1  
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8. Evaluate: a) Ln 1 ; b) Ln (-1) ; c) Ln i ; d) Ln 1 + i ; and e) ii .
Hint. Using (8) for Ln, and (9) for the complex power we obtain:

}:2{1 Z kikLn  ;

}:)2{()1( Z kikLn 

}:)2{(
2

Z kikiLn 

}:)2(2ln{)1(
42

1 Z kikiLn 

}:{
2

2 Z
 keei

kiLnii 

.

6. Show that the complex sin and cos are not bounded. In particular,

evaluate the modulus of sin[ + i ln(2+ 5 )].
Hint. Find the real and imaginary parts of the functions, e.g.

xyiyxxiyiyxiyxz cossinhcoshsincossincossin)sin(sin  .

Consequently, we have yxz 22 sinhsinsin  . It remains to remember

that the (real!) sinh is unbounded. In particular, | sin[ + i ln(2+ 5 )] | = 2.
9. Establish the formulas

)1(sin 2ZiZiLnZArc  , )1(cos 2  ZZiLnZArc ,

iZ

iZ
Ln

i
ZArc






1

1

2
tan ,

iZ

iZ
Ln

i
ZArc






2
cot ,

and solve the equation sin z = 2. Find similar formulas for hyperbolic
functions.



Chapter II. Convergence

134

Hint. }sin:{sin ZzzZArc  C . If we replace zie in the Euler’s

formula
i

ee
z

zizi

2
sin


 , then we find 21 ZZi  , and Ln

i
z

1
 .

In particular, the solutions of the equation sin z = 2 have the form

  }:2)32ln(
2

{)32(2sin Z kkiiiLnArcz 


.

If we introduce the first determination by )32ln(2arcsin
2

 i , then

we obtain the “old” formula
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2sin , k Z .
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CHAPTER III. CONTINUITY

§ III.1. LIMITS AND CONTINUITY IN R

This section is a synthesis about the notions of “limit” and “continuity” as
they are learned in the high school (also referred to as lyceum). Such a
recapitulation naturally extracts the essential aspects concerning the notions
of limit and continuity for real functions depending of one real variable.

As usually, the high school textbooks are thought like introduction to the
field of interest, and they are merely based on description of practical facts,
constructions, and direct applications. Their purpose is to offer some ideas
and models, which hold out enough motivation for a rigorous and extensive
study. Now, we suppose that these starting points are already known.

In particular, we consider that the following aspects are significant in the
textbooks on Mathematical Analysis, at the standard level in high school:
1.1. Remarks. a) The real numbers are not rigorously constructed, but only
described by their decimal approximations from Q; most frequently, the

fundamental algebraic and order properties are mentioned as axioms. The
representation of R as a real line is currently used to help intuition.

b) The notion of continuity is studied with no reference to the specific
structure; its qualitative feature is obvious if compared with Algebra or
Geometry, but a strong relation to measurements is predominant. More
exactly, the neighborhoods VV (x0), where x0 R, are described in terms

of order and absolute value, using the condition to contain open symmetric
intervals, namely

V (x0 – , x0 + ) = {xR : | x – x0 | <  }

for some  > 0. The topological forthcoming structure is not mentioned at
all. In addition, almost all proofs are based on some particular algebraic and
geometric properties of R, but not on the topological ones.

c) The symbols  are introduced before speaking about limits and
convergence, so they are directly related to the order structure of R. In

particular,  are involved in the study of boundedness, as well as in the

notations (  , a) = {xR: x < a}, [b,  ), R , etc. (compare later to the

property of being compact). Similarly, the sign  makes a purely formal
sense when we express a limit, e.g. n

n
x


 lim .

Other remarks refer to the manner in which different classes of functions
are dealt with. For example, there is no mention that solving the practical
problems, or giving some examples, strongly depends on some previously



Chapter III. Continuity

136

constructed and “known” functions, which, at the beginning, are the so-
called elementary functions (as already said in § II.4.)

Besides the algebraic and order properties, which include the rules of
operating with inequalities, the following properties are essential starting
points for the development of the mathematical analysis on R:

1.2. Fundamental Properties. a) (Cantor) For any bounded set in R there

exist the infinimum and the supremum in R.

b) (Archimedes) For every xR there exists a unique integer nZ such

that n x < n + 1 (called entire part of x, and noted [x]).
Proof. a) The problem of proving this assertion rises only for particular
constructions of R. In the axiomatic descriptions of R it is known as the

Cantor’s axiom.
b) The Archimedes’ property is sometimes considered as an axiom too.

However, in a framework like the present one, it is a consequence of a). In
fact, if we suppose the contrary, then nx would hold for all nZ. This

means that Z is bounded, hence according to the Cantor’s axiom, there

would exist  = sup ZR. Consequently,  – 1 < p   must hold for some

p in Z, hence  < p + 1. Because p + 1 Z too, this is in contradiction to

the very definition  = sup Z. }

1.3. Remarks. a) Taking the Cantor’s axiom as a starting point of our study
clearly shows that the Real Analysis is essentially based on the order
completeness of R. At the beginning, this fact is visible in the limiting

process involving sequences in R, which is later extended to the general

notion of limit of a real function.
b) We remember that the notion of convergence is presented in a very

general form in the actual high school textbooks. The limiting process is
essential in approximation problems, which naturally involve convergent
sequences and series. For example, in practice we frequently approximate

the irrationals, i.e. we operate with 1.4142 instead of 2 , or with 3.14
instead of , etc. In particular the Euler’s number

e =
n

n n












1
1lim

is carefully introduced and studied in the most textbooks, including the
presentation in the form of a series

e = 1 + ...
!

1
...

!2

1

!1

1


n
.

c) Excepting the algebraic functions, whose values are obtained after a
finite number of algebraic operations, the evaluation of any other function
(generally being transcendent) requires a limiting process. For example, the
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values of ex, log x, sin x, etc., as well as simpler expressions like x ,
x1

1 ,

etc., represent sums of some series. More particularly, let us say that we

have to evaluate f (x) = 3x at the point x0 = 2. Primarily, we must reduce
the problem to rational powers, because f (2) is the limit of the sequence

2, 21.7, 21.73, …
Finally, it remains to approximate the roots of indices 10, 100, etc.

Such problems clearly show that we need to extend the limiting process
from sequences, which are functions on N, to arbitrary functions. On this

way, n  is naturally generalized to xa R.

1.4. Definition. Let f : DR be an arbitrary function of a real variable

xD R, and let a R be an accumulation point of D (i.e. aD / ). We say

that f has the limit R at a iff for any neighborhood V of  there exists a
neighborhood U of a such that at any xD  (U \ a) we have f (x)V. In
this case we note

)(lim xf
ax

 .

If, in addition, aD and f (a) =  , we say that f is continuous at this point.
If f is continuous at any point aD, then we say that f is continuous on D.

In practice it is useful to describe the existence of the limit in other terms,
as follows:
1.5. Theorem. The following assertions are equivalent:
a) There exists )(lim xf

ax
 ;

b) For any sequence (xn) in D \ {a}, we have [ xn a implies f (xn)   ];
c) The lateral limits exist, and f (a – 0) = f (a + 0).

In addition, if a, R (i.e. they differ from  ), then these conditions

are equivalent to the following:
Dxsuch thatδε  [00 \ {a} & | x – a | <   )(] xf .

Proof. b) a), more exactly ea) eb) : If f has no limit at a, then for any

R there exists some  > 0 such that for arbitrary > 0, there exists some

x(D \ {a}) (a – , a + ) for which | f (x) –  | > . In particular, let us

take  =
n

1
, where nN, and note by xn the corresponding point. It is easy

to see that xn a, but f (xn) 9  .

The rest of the proof is recommended as exercise. }

1.6. Remarks. a) Many properties, which are well known for sequences,
remain valid for the general notion of limit. As a model, we mention the
following rule of adding limits:
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Let us consider f, g : D R , where D R , and let us fix aD /. If there

exist )(lim xfl
ax

 , and )(lim xgk
ax

 , then there exists
ax

lim (f + g)(x) too,

and it equals l + k (respecting the rules of operating with  ).
b) A lot of limits in the textbooks express either continuity of particular
elementary functions, or their behavior at  . However, there are some
remarkable cases, called undeterminable, which cam be establish by using
the derivatives (e.g. l’Hôpital rules). We recall some of the most important:

0
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The most part of practical problems combine such “fundamental limits”,
in the sense that composing continuous functions gives rise to continuous
functions.
c) The evaluation of a limit is deeply involved in the notion of asymptote of
a graph. There are three types of asymptotes:

 The graph has a horizontal asymptote y = l at + if
;)(lim R


xfl

x

 The straight line x = a is a vertical asymptote from the left, upwards
(respectively downwards) the graph, if






)(lim xf

ax
ax

;

 The straight line y = m x + n is an oblique asymptote at + if
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  RR 


mxxfnand
x

xf
m

xx
)(lim

)(
lim * .

Similarly, we define the horizontal and the oblique asymptotes at – , as
well as the vertical asymptotes from the right.

The most significant properties of the continuous functions are expressed
in terms of boundedness and intermediate values (see later compactness,
respectively connectedness). The following two results refer to the behavior
of the continuous functions on compact intervals.
1.7. Definition. We say that a set D  R is bounded iff there exist a, b R

such that D  [a, b]. In particular, [a, b] is a compact interval (i.e. bounded
and closed). We say that a function f : D R is bounded iff f (D) is a

bounded set in R, i.e. there exist the lower and upper bounds :

m = inf {f (x) : xD} R and M = sup {f (x): xD} R.

If m = f (x*) and M = f (x**) at some x*, x** D, then we say that f
attains (touches) its extreme values (bounds).
1.8. Theorem. If a function f : D R is continuous on a compact interval

[a, b] D, then it is bounded function that attains its bounds on [a, b].
Proof. Let us suppose that function f is continuous but not upper bounded
on [a, b]. Then there exists a sequence (xn) in [a, b], such that the sequence

))(( nxf tends to  . According to the Weierstrass theorem, this sequence

has a convergent subsequence, say (
knx ), for which )(

knxf too. Let

us note
kn

k
xl


 lim , and remark that l [a, b]. Since f is continuous at l, it

follows that  )()( lfxf
kn . The contradiction shows that f must

have an upper bound. We similarly treat the lower boundedness.
To show that f attains its lower bound, let ( n ) be a sequence in [a, b],

such that  n

not

nf 
.

)( m = inf {f (x) : x[a, b]}. Using the Cesàro’s

theorem, let us construct a convergent subsequence  x
kn )( [a, b].

Since f is continuous, we deduce that m = )()(lim xff
kn

k



 .

Similarly, we show that M = f ( x ) at some x [a, b]. }

1.9. Definition. Let f : D R be a continuous function on D R, i.e.

 





)()(),(
0),(0

yfxfxyxthatsuch
DyxDx

.

If in this condition we can use some  () for all xD, i.e.
 





)()()(

,0)(0
yfxfyxthatsuch

Dyx
,

then we say that f is uniformly (briefly u. -) continuous on D.
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1.10. Examples. a) Function f : DR is said to be Lipschitzean iff there

exists L > 0 (called Lipschitz constant) such that the Lipschitz’ condition
| f (x) – f (y) | L | x – y |

holds at any x, yD. It is easy to see that the Lipschitzean functions are u.-
continuous (e.g. functions with bounded derivatives, like sin, cos, etc.).
b) The polynomial functions Pn of degree n2 are not u.-continuous on R,

but they are u.-continuous on compact intervals.

c) The function
x

1
, defined on R* (or on (0, 1], etc.) is not u.-continuous.

1.11. Theorem. If a function is continuous on a compact interval, then it is
uniformly continuous on that interval.
Proof. Suppose by reductio ad absurdum that f : [a, b]R is continuous,

but not uniformly continuous on [a, b]. Then there exists 0 > 0 such that

for any n =
n

1
, where nN*, we can find some points xn , yn  [a, b], for

which | xn – yn | < n, but | f (xn) – f (yn) | 0 . Making use of the same
Cesàro’s theorem (in two dimensions, since (xn , yn)  [a, b]2 R2), let us

construct a convergent subsequence of (xn, yn), say ),(
kk nn yx , for which

we have ],[lim bax
kn

k



 and ],[lim bay

kn
k




 . In addition, we

claim that  =  . In fact, the second term in the inequality
|  – η | < |  –

knx | + |
kk nn yx  | + |

kny –  |

can be made arbitrarily small for sufficiently large n.
The proof is achieved if we remark that the equality  =  contradicts the

hypothesis 0)()( 
kk nn yfxf . }

Finally, we remind the property of intermediate values, namely:
1.12. Definition. Let f : IR be a function, where I is an interval of R. We

say that f has the property of intermediate values on I, iff for any x1, x2I,
and any c(f (x1), f (x2)), there exists some  ( x1, x2) such that f () = c.

In this case, we also say that f is a Darboux function (or, it has the
Darboux’ property), where c is called intermediate value.

It is easy to see that f has the property of intermediate values if and only
if it transforms any interval from I into another interval.
1.13. Example. Function f : RR, defined (using aR) by













0xif

0xif
1

sin
)(

a

xxf

is not continuous, but it is a Darboux function iff a[–1, +1].
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1.14. Theorem. Each continuous function is a Darboux function.
Proof. The assertion of the theorem can be reduced to the fact that for any
continuous function f : [a, b]R which changes the sign at the endpoints

(i.e. 0)()(  bfaf ), there is some  [a, b] where f () = 0. To prove it in

this last form, we may divide [a, b] into equal parts and choose that half
interval on which f changes the sign, which we note I1. Dividing I1, we
similarly obtain I2 , and so on. To conclude, we may apply the principle of
included intervals to find  . }

1.15. Remark. The above theorem assures the existence of at least one root
for the equation f (x) = 0, where f is continuous. More than this, following
the above proof, we can concretely solve such equations. More exactly, we
can approximate the solution up to the desired degree of accuracy (actually
done by the computer algorithms).

The same theorem is used to establish the intervals of constant sign of a
continuous function. In fact, according to this theorem, any continuous
function preserves its sign on the intervals where it is not vanishing.
1.16. Theorem. Let f : IJ be a continuous function, where IR denotes

an interval, and J = f (I). This function is 1:1 if and only if it is strictly
monotonous. If so, f –1 : J  I is continuous and strictly monotonous too.
Proof. It is easy to see that every strictly monotonous function is 1:1.
Conversely, because any continuous function is Darboux, it follows that the
property of being injective implies the strict monotony.

The inverse of any strictly monotonous function obviously is of the same
type. It remains to show that f –1 is continuous on J. In fact, if we remember
that the neighborhoods of any point in R contain intervals, then according

to the Darboux’ theorem, it follows that the continuous functions are
carrying intervals into intervals. }

Later we will see how such properties concerning the limiting process
can be extended from the case of real sequences, and real functions of a
single real variable, to more general situations.
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PROBLEMS §III.1.

1. Study the continuity and find the asymptotes of the function

f (x) =

 

















0

01

01

1

11

xife

xif

xifex

/x

/x

Hint. f is discontinuous at 0.
2. Find the following undetermined limits:

a)
xxx

xx

x 



 4 3

2 1
lim ; b)

x

x

x x

x 















 1

1

2

1
lim ;

c)
x

x

x

)2ln(sin
lim




; d)

30

sin
lim

x

xtgx

x




.

Hint. a) Put forward the factor x. b) Use a fundamental limit that leads to e .
d) Function sin is bounded and ln is increasing. d) Reduce to fundamental
undetermined limits using trigonometric formulas.
3. The rational function is defined as a quotient of irreducible polynomials.
Pick up the rational functions from the following:

a) cos (n arccos x); b) [x] = entire part of x; c) x – [x] ; d) x ;

e) | x | / x ; f) 12 x ; g) ex ; h) sin x.
Hint. a) Use the Moivre’s formula to show that this function is polynomial,
hence rational function (the single on the list). b) and c) have infinitely
many discontinuities (of the first type!). d) is not defined on R_ . e) The

quotient of irrational functions may be rational. However, if we suppose
that | x | / x = P(x) / Q(x), where P and Q have the same degree (since the
limit of P / Q at  is finite), then we are led to the contradiction

k
xQ

xP

x

x

xx


 )(

)(
lim1lim .

f) and g) idem. h) has infinitely many zeros.
4. A real function f of one real variable is said to be algebraic iff there
exists a polynomial (of degree n, with a parameter x),

P(u) = k
n

k
k uxa 



)(
0

,

where ak are real polynomials, such that P f  0. If not, f is called
transcendent. Show that the rational functions as well as the roots (with

arbitrary index) of polynomials (in particular x and | x | = 2x ) are
algebraic functions while ex and sin x are transcendent.
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Hint. If f = A/B, we take P(u) = A – Bu; if f = m A , we use P = A – um, etc.
On the other hand, the identity

a0(x) + a1(x)ex + … + an(x)enx  0
is not acceptable. In fact, it leads to 0)(lim 0 


xa

x
, hence a0  0, and

similarly (after dividing by ex), a1  0, etc.
In the case of sin we may reason by referring to the finite set of zeros,

namely {k : kZ}, and we similarly show that a0  0, …, an  0.

5. Give examples of real functions having the properties:
a) They are defined on R but continuous at a single point;

b) They are defined and discontinuous at each xR;

c) They are continuous at each irrational, and discontinuous in rest.
Hint. a) + x, depending on xQ or not; b) + 1, similarly depending on the

rationality of x; c) Analyze the function:

f (x) =











.\0

1

QR

Q

xfi

n

m
xfi

n

6. Let us note ffff
n

 ...
)(

 , where f : RR. Show that
)(n

f is

continuous, periodical, respectively bounded for arbitrary nN*, if f is so.

In particular, evaluate )(lim
)(

xf
n

n 
if f (x) = sin x, at several points x R.

Hint. Function
)(

sin
n

has the same intervals of monotony as sin. The limit is 0

everywhere, since 0
2

sinlim
)(












n

n
.
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§ III.2. LIMITS AND CONTINUITY IN TOPOLOGICAL SPACES

In this section we aim to present the notions of limit and continuity in the
most general framework, namely for functions acting between topological
spaces. Therefore we expect the reader to be well acquainted with general
topological structures, in the sense of § I.4 at least. A good knowledge of
the high school handbooks, briefly sketched in the previous § III.1, will be
also very useful.

To explain why this general theory is necessary, we mention that it offers
the advantage of taking a long view over many particular cases that involve
mathematical analysis, and other forms of the idea of continuity. On the
other hand, the general theory is easily accessible since it naturally extends
the case of a real function of one real variable.
2.1. Definition. Let (X, ) and (Y, ) be topological spaces, and let us

consider a set A  X, a point aA/, and a function f : A  Y. We say that

an element lY is the limit of f at the point a, iff for any V (l) there

exists U (a) such that f (x)V whenever xU A, where U = U \ {a}. If
aA, and f (a) = l, we say that f is continuous at a. If f is continuous at each
aA, we say that f is continuous on the set A.

If f is continuous on X, is 1:1, and f –1: Y X is continuous on Y, then

f is called homeomorphism between the topological spaces X and Y. In

other words, (X, ) and (Y,) are said to be homeomorphic iff there exists
a homeomorphism between them.
2.2. Remark. The use of the same notation, namely lim, for more notions,
namely for the convergence of a sequences, as well as for that of limit and
continuity of a function acting between topological spaces, is naturally
explained by the existence of some intrinsic topology on any directed set.

More exactly, if ),( D is a directed set, and D , then }{ DD is

naturally endowed with its intrinsic topology in the sense of I.4.5.(iv). In
addition, let (S, ) be a topological space, and let f : DS be a net in S.

It is easy to see that l = f
D

lim iff the prolongation Df : S, defined by










xifl

Dxiff(x)
(x)f

is continuous at  relative to the intrinsic topology  on D, and to the
initially considered topology  on S.

In particular, the limit of a sequence f : NS can be viewed as the limit

of its prolongation f , relative to an intrinsic topology  of N = N   ,

where  N, and  has the values
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(x) =
 

  









.:

:

xifn,Vsuch thatnV

xifVxV

NN

NN

Similarly, defining (if aA), or modifying (if l  f (a)) the value of f at a,
such that f (a) = l, the existence of )(lim xf

ax
can be reformulated in terms

of continuity. Such a connection between convergence and continuity is
involved in the following property concerning the composed functions:
2.3. Theorem. Let (X, ), (Y, ), (Z, ) be topological spaces, in which we

take the points x X , yY , and z Z .

(i) We note X 0 = X \ {x}, Y 0 = Y \ {y}, and we consider that x (X 0)
/,

and y(Y 0)
/. If the functions f :X 0 Y 0 and g :Y 0 Z have the limits

y = )(lim uf
xu

and z = )(lim vg
yv

, then z = ))((lim ufg
xu




.

(ii) If the function F :XY is continuous at x, and the function G :Y Z
is continuous at y = F (x), then the function GF is continuous at x.
(iii) Each net (in particular sequence) is convergent iff all of its subnets
(subsequences) are convergent to the same limit.
Proof. (i) To any V  (z) there corresponds U (y), hence W(x), such

that u W X 0 implies v = f (u) U Y 0 , and finally (g f )(u)V.

(ii) Similarly to (i), for each V  (z) there exists U (y), hence W(x),
such that u W implies v = F (u) U , and finally (GF )(u)V. In addition,

we have y = F(x) and z = G(y), hence z = (GF )(x).
(iii) Let (E, <<) be a directed set, and let  be the intrinsic topology of the

space X = E = E{$}, where $ plays the role of infinity to E. In a similar

manner, let (D,  ) be another directed set, and let  be the intrinsic

topology of Y =   DD . Finally, let the net f0 : ED be extended to

f : X Y by

f (u) =








,$

0

Euif

Eu(u) iff

and let g0 : DZ be extended to g : Y Z by

g(v) =








.

0

Dvifz

Dvif(v)g

Obviously, the net g0 is convergent to z in the topological space (Z, ), if

and only if z = )(lim vg
v 

. In addition, it is easy to see that f0 is subject to

the Kelley’s condition [s] of subnets if and only if )(lim
$

uf
u

 . Using the

above result on composed functions, it follows that z = ))((lim
$

ufg
u




,

which shows that the subnet g0  f0 is convergent to z too.
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The converse implication is obvious, because in particular, each net is a
subnet of itself, for which E = D, and f0 the identity on D.

Of course, taking E =D = N, and $ =  , we obtain the similar property

for sequences. }

Simple examples (see problem 4 at the end of this section) show that the
rule (i) of composed limits cannot be formulated as simply as the rule (ii)
of composed continuous functions in theorem 2.3 from above. Of course,
other hypotheses are possible in (i) (see [DE], [FG], [G-O], etc.).

In order for us to complete the list of relations between convergence and
continuity, we introduce the following:
2.4. Theorem. (Heine). Let (Y , ), (Z , ) be topological spaces, and let

(D,  ) be a directed set. Function g:Y Z has the limit z = )(lim vg
yv

if

and only if for any net f : DY , we have

y = )(limlim fgzf
DD

 . (H)

Proof. According to theorem 2.3 about composed functions, from y = f
D

lim

and z = )(lim vg
yv

it follows that z = )(lim fg
D

 .

Conversely, let us suppose that the implication (H), usually called Heine
condition, is fulfilled. Let us remark that the particular set

D = {(V, v) (y) x Y : vV}
is directed by the order relation defined by

(U, u)  (V, v)  VU.
The main use of (D,  ) is that the net f :DY , defined by f (V, v) = v,

always converges to y. Finally, according to theorem 2.3, z = )(lim fg
D

 is

nothing but z = )(lim vg
yv

. }

For practical reasons (e.g. approximation problems, modeling continuous
and deterministic systems, etc.), it is desirable to ensure the uniqueness of
the limit, whenever there exists one. This property of the limit turns out to
depend on the topological structure of the target space of the considered
function (in particular net, or sequence). More exactly:
2.5. Definition. (Hausdorff axiom) We say that a topological space (Y , )
is separated (Hausdorff, or T2) iff
[T2] For each pair of points y /, y// Y , where y / y//, there exist some

neighborhoods V /(y / ) and V/ / (y//), such that V /V// =  .
2.6. Theorem. A topological space (Y , ) is separated iff for any other

topological space (X , ), and any function f : X Y, which has a limit at

an arbitrary xX, this limit is unique.



§ III. 2. Limits and continuity in topological spaces

147

Proof. Let us suppose that (Y, ) is separated, and still there exists a

function f : X Y, such that both y / = )(lim uf
xu

and y// = )(lim uf
xu

. Then

there exist U /(x) and U //(x) such that f (U /)V / and f (U//)V//.
Because of [N1] and [N3], we have U /U// Ø, contrarily to V /V// = Ø.

Conversely, let us suppose that (Y , ) is not separated, and let y/, y// Y

be a pair of different points for which V /V// Ø holds for all V /(y/)
and V//

 (y//). If so, we may define the set
D = {(V /, V//, y)  (y /) x (y//) x Y : y V /V// },

which is directed by the product relation of inclusion
(U /, U//, u) (V /, V//, v)  V /U / and V// U//.

As usually, we construct X = D   D and endow it with its natural

topology . Consequently, the function (more exactly the net) f : D Y, of

values f (V /, V//, y) = y, has two limits at  , namely y / and y// . }

By extending the function (and its inverse) from points to sets, and to
families of sets, we obtain other forms for the notion of “continuity”:

2.7. Theorem. Let (X , ) and (Y , ) be topological spaces. If f : XY,
then:

(a) f is continuous at a X iff )()))((( aaff   ,

(b) f is continuous on X iff [ )(Af  is open (closed) in X whenever A is

open(closed) in Y ],

(c) f is continuous on X iff [for any AX, a A implies f (a) )(Af ] , i.e.

f ( A ) )(Af .

Continuity is useful when we need to compare topologies, or to obtain
new topologies (e.g. on a subset, product space, quotient space, etc.):
2.8. Standard constructions. 1) Let τ and  be two topologies on the
same set X. We say that τ is coarser (smaller, etc.) than  (which is finer,

greater, etc. than τ) iff the identity ι:  XX  is continuous, where the

indices τ and  represent the topologies considered on X . Since this means

that τ(x)  (x) holds at each xX , we may note τ  .

2) Let (X , τ) be a topological space, and let a subset Y  X be endowed

with a topology  . We say that (Y ,  ) is a topological subspace of (X , τ)
iff  is the coarsest topology for which the canonical embedding

ε : Y  X,

defined by ε(y) = y  X at each y  Y, is continuous on Y. Alternatively,

HY is  -open iff H = GY holds for some τ-open set GX.
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3) Let (X , τ) and (Y ,  ) be topological spaces. The product topology ζ 

on Z = X x Y is defined as the coarsest topology on Z for which the

projections Px : ZX, and Py : ZY are continuous (remember that the
projections are defined by Px (x, y) = x and Py (x, y) = y).

In order to construct the product topology, we mention that for each pair

of neighborhoods )(xV  , and U (y), the cylinders )(1 VPx
 and

)(1 UPy
 represent ζ – neighborhoods of (x, y)Z, hence Wζ(x, y) holds

exactly when W contains a rectangle of the form )()( 11 UPVP yx
  .

4) Let (X , τ) be a topological space , let ~ be an equivalence on X, and let

Xˆ= X /~ be the quotient space. The finest topology on Xˆ , for which the

canonical application  : X  Xˆ is continuous on X , is called quotient
topology. It is frequently noted ̂ . We remind that that the canonical
application in the construction of the quotient space is defined by

(x) = }~:{ˆ xyyx X

at all xX . In other words, if V  τ(x), then )ˆ(ˆˆ xV  .

These “standard” constructions of a subspace, a product space, and a
quotient space, confer special roles to the specific functions of embedding,
projection and quotient, as shown in the following propositions 2.9 to 2.11:
2.9. Proposition. Let (X , τ) and (Y ,  ) be topological spaces. The

function f : AY , where Ø  AX , is τ –  continuous on A iff it is

continuous on A relative to that topology , which makes it a topological
subspace of X .

Proof. For any aA we have V (a) iff V = WA for some Wτ(a),
hence f and f ι are simultaneously continuous. }

2.10. Proposition. Let (S , σ), (X , τ) and (Y ,  ) be topological spaces,

and let Z = X x Y be endowed  with the product topology ζ. Then function 

f : SZ is continuous at s  S (respectively on S ) iff their components

fx = Px  f, and fy = Py  f are continuous at s (respectively on S ).

Proof. Since Px and Py are continuous on Z , according to the previous
proposition, fx and fy will be continuous.

Conversely, let the functions fx and fy be continuous at s  S, and let W

be a neighborhood of f (s) = (fx (s), fy (s)) Z . According to the
construction of the product space, there exist U  τ(fx (s)), and V (fy (s))

such that WU x V. The continuity of fx and fy shows that )()( sUf x 

and )()( sVf y  . It is easy to see that for L = )(Uf x
  )()( sVf y 

we have f (L) W. }
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2.11. Proposition. Let (X , τ) be a topological space, and let (Xˆ ,̂ ) be the
quotient topological space corresponding to the equivalence relation ~ on

X. If (Y ,  ) is another topological space, then f : XˆY is continuous

on Xˆ iff f is continuous on X, where  is the canonical application of
the quotient space.
Proof. We may directly refer to construction 2.8.4). The topology ̂ is so

defined such that the function  :X Xˆ is continuous, hence the assertion

“f continuous” obviously implies “f  continuous”.
Conversely, if f is continuous on X , then at each point xX, we have

V )()()())(( xVfxf    .

Obviously, (f) (V) =   (f  (V)). Because f  (V) is a neighborhood

of x̂ in some topology of Xˆ , and ̂ is the finest topology for which  is

continuous, it follows that f  (V)  ̂ ( x̂ ). Consequently, the function f is
continuous at x, which is arbitrary in X. }

In the remaining part of this section we study two of the most important
topological properties of sets, namely connectedness and compactness. We
remind that these notions have been partially studied in lyceum, because in
R, connected means interval, and compact means closed and bounded.

2.12. Definition. The junction of two subsets A and B of a topological

space (S, τ) is defined by J (A, B) = (A B ) A( B).

If J (A, B) = Ø, we say that A and B are separated. A set MS is said
to be disconnected iff M = AB, where AØB, and A and B are
separated. In the contrary case, we say that M is connected.

It is useful to recognize some particular connected sets:
2.13. Theorem. In the Euclidean topology of R, M is connected iff it is an

interval (no matter how, closed or open).
Proof. Let us assume that M is connected. The fact that M is an interval
means that for any x, yM, x < y, we have [x, y]M. If we suppose the
contrary, i.e. M isn’t interval, there exists c(x, y) \ M. Using c, we can
construct the sets A = {xM : x < c}, and B = {xM : x > c}. Obviously,
M = AB, AØB and J (A, B) = Ø, hence M should be disconnected.
The contradiction shows that M must be an interval.

Conversely, let us show that any interval IR is connected. Assuming

the contrary, we can decompose I into separate parts, i.e. I = AB, such
that AØB, and J (A, B) = Ø. If so, let us fix aA and bB, say in the

relation a < b. Because I is an interval, we have [a, b] I. In particular, also
c = sup (A [a, b])I. Two cases are possible, namely either cA, or cB.
Finally, we show that each one is contradictory.
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Case cA. Since J (A, B) = Ø, we necessarily have c < b. On the other

side, (c, b] A = Ø. Because I is an interval, it follows that (c, b] I, hence
(c, b]B. In conclusion, c J (A, B) = Ø, which is absurd.

Case cB. By its construction, c A , hence c  J (A, B) = Ø again, so
this case is also impossible.
To conclude, the assumption that I is not connected is false. }

2.14. Theorem. Let {Mα : αI } be a family of connected sets. If the sets

Mα are pair wise non-separated, i.e. J (Mα, Mβ) Ø whenever α β, then

the union M = {Mα : αI } is a connected set too.
Proof. Let us suppose the contrary, i.e. M = AB, where A and B are non
void and separated. Because each Mα is connected, we have either MαA,
or MαB for all αI (otherwise the sets MαA and MαB would be non
void and separated components of Mα, which contradicts the connectedness
of Mα). Now, using the monotony of the junction relative to the relation of
inclusion, we obtain Ø  J (Mα, Mβ)  J (A, B) = Ø, whenever MαA

and MαB, contrarily to the hypothesis. }

2.15. Theorem. Let (X , τ) and (Y ,  ) be topological spaces, and let the

set MX be connected. If f : X  Y is continuous on X, then f (M) is

connected in Y .
Proof. If we suppose the contrary, then we may decompose f (M) = A B,
such that AØB, and J (A,B) = Ø. Consequently, the inverse images

of A and B, namely A = M f  (A)  Ø, and B = M f  ( B ) Ø ,
realize the decomposition M = AB. Since f is continuous, we have

J (A, B)  f  (J (A,B)) = Ø,

which contradicts the hypothesis that M is connected. }

2.16. Corollary. Every real continuous function on R (endowed with the

Euclidean topology) has the Darboux property.
Proof. The Darboux property claims that the direct image of any interval is
also an interval. According to theorem 2.13, we may replace the term
interval by connected set, and then apply theorem 2.15. }

2.17. Remark. We may use the above results to construct connected sets,
e.g. continuous arcs in the complex plane, open or closed discs, sets
obtained by taking the adherence of connected sets, unions, etc.

Another useful notion in this respect is that of connectedness by arcs.
More exactly, M is connected by arcs iff for any two points x, yM there
exists a continuous arc γ, of end-points x and y, which is entirely contained
in M (a continuous arc is the image through some continuous function of
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an interval of the real axis). We mention without proof that, for open sets,
the conditions connected and connected by arcs are equivalent.
2.18. Definition. Let K be a set in a topological space (S, τ), and let G be

the family of all open sets in S. By open cover of a set KS we

understand any family AG whose union covers K, i.e.

K {G : GA }.

We say that K is a compact set iff from every open cover A of K we can

extract a finite sub-cover, i.e. there exists a finite sub-family BA , for
which a similar inclusion holds, namely

K {G : GB}.
2.19. Examples. a) We may easily obtain open covers of a set starting with
open sets conceived to cover only one point. On this way, in R, we find out

that the set A = {1/n : nN*} is not compact. However, the set A{0} is

compact, because covering 0, we cover infinitely many terms of A.
b) The finite sets are compact in any topology of an arbitrary space.
c) Each closed interval [a, b]R is compact. More generally, any closed

and bounded set in Rn is compact.

d) The Riemann sphere is not compact because it isn’t closed (see I.2.22).

If we add the “North Pole” N (  ), then S C }({N ) is compact.

e) The spaces R, C, and generally Rn are not compact, but R = R }{

and C = C }{ are compact.

The main property of a compact set refers to the transfer of this property
to the image through a continuous function. In particular, if f :IR is

continuous and K IR is compact, then f is bounded on K and it attains

its extreme values. This property turns out to be generally valid, i.e. it holds
if we replace R by arbitrary topological spaces, namely:

2.20. Theorem. Let (X , τ) and (Y ,  ) be topological spaces, and let K

be a compact set in X . If the function f : XY is continuous on X, then

the image f (K) is a compact set in Y.

Proof. Let A be an open cover of f (K), and let us consider

U = {f  (G) : GA }.

Since f is continuous, U represents an open cover of K. Let V U be a
finite sub-cover of K, which exists because K is compact. It is easy to see
that the corresponding subfamily of images

B = {f (X): X V }A

is the finite open cover of f (K), which we are looking for. }

We can express many general properties of the compact sets in terms of
convergence. The analysis of such aspects is based on some properties of
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closed sets and operator “adherence” expressed in terms of convergence, as
partially contained in Theorem II.1.5. In addition we mention:
2.21. Lemma. Let (xn) be a sequence in a topological space (S, τ). If none

of its subsequences is convergent, then all the sets Gk = S \ {xk , xk+1 , …},

where kN, are open.

Proof. If we suppose the contrary, then some point xGk is not interior to
Gk , i.e. any neighborhood V τ(x) contains terms xn of the sequence, of
rank nk. It follows that x is adherent to {xn}, and by Theorem II.1.5.(i), x
should be the limit of some sequence in the set {xn}. Obviously, this
sequence can be arranged as a subsequence of (xn), contrarily to the
hypothesis that such subsequences do not exist at all. }

Now, from compactness we may deduce properties of convergence:
2.22. Theorem. If K is a compact set in the separated topological space
(S, τ), then the following properties hold:
a) K is closed, and
b) For any sequence (xn) in K (i.e. xnK for all nN), there exists a

subsequence (
knx ), convergent to some xK (when we say that K is

sequentially compact).
Proof. A) If we suppose the contrary, i.e. K K , it follows that there exists

some xK \ K (the converse inclusion, K K , always holds). According to
condition [T2], for every yK, xy  , there exists a pair of neighborhoods

Vyτ(x) and Uyτ(y) such that VyUy = Ø. Since K is compact, there exists

a finite set of points, say {y1, y2, ..., yn}K, such that K  {
kyU : k= n,1 }.

On the other hand, the neighborhood V =  {
kyV : k= n,1 }τ(x) has no

point in K , contrarily to the hypothesis xK . To avoid this contradiction,

we have to accept that K =K, i.e. K is closed.
b) Supposing the contrary again, let (xn) be a sequence in K, such that no

subsequence is convergent to some xK. Because K is compact, hence just
proved closed, the subsequences of (xn) cannot be convergent in S (see
Theorem II.1.5(ii)). Now, let us construct the sets Gk as in the lemma 2.21,
which form an increasing sequence, i.e. GkGk+1 holds for all kN. On the

other hand, {Gk} forms an open cover of K. Using the compactness of K, let
Gn be the greatest element of a finite sub-cover of K, hence Gn K. This
relation contradicts the fact that xnK, but xnGn . Consequently, the initial
supposition is impossible, i.e. sequence (xn) cannot ever exist. }

It is easy to see that finite unions and arbitrary intersections of compact
sets are compact too. The problem of compactness of an arbitrary Cartesian
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product is more difficult, except the case of a finite family of compact sets,
which is relatively simple:
2.23. Theorem. Let (X , τ) and (Y ,  ) be topological spaces, and let their

Cartesian product Z = X x Y  be endowed  with product topology ζ. If the 

sets KX and LY are compact, then K x L is a compact set in Z.

Proof. Because any open set in (Z , ζ) is a union of sets of the form G x F,

where G is open in (X , τ) and F is open in (Y ,  ), it follows that each

open cover A of K x L generates another open cover, say

A * = {Gi x Fj : (i, j)P},

where P I x J, and I, J are certain families of indices. It is clear that family
{Gi : (i, j)P} is an open cover of K, while {Fj : (i, j)P} is an open cover
of L. Consequently, using the hypothesis concerning the compactness of K
and L, we find finite subfamilies I0 I and J0 J, such that the sub-families
{Gi : iI0} and {Fj : jJ0} are open sub-covers of K, respectively of L. In
conclusion we see that the family

A 0 = {AA : AGi x Fj for some (i, j) I0 x J0}

is a finite open sub-cover of A, hence K x L is compact. }

2.24. Remarks. (i) Using the above results on compactness we can easily
construct particular compact sets. For example, the compact sets in R are

finite unions of closed intervals; the continuous arcs, which contain their
end-points, are compact sets in C ~ R2, or generally in Rn; the closed balls,

and closed parallelograms, etc. For more examples and details in Euclidean
spaces, we recommend the reader to see the next section.
(ii) A lot of assertions reveal properties (e.g. “point a is adherent to A”, “M
is connected”, “K is compact”), which are invariant under continuous
transformations, i.e. they remain valid for images through continuous
functions. In general, such properties are said to be topological, and
topology itself is defined as their study (compare to geometries!).
(iii) It is easy to see that important topological spaces like R, C (~ R2), and

generally Rn (thoroughly discussed in the next section), are not compact.

Because of many convenient properties of the compact spaces, especially
involving continuity and convergence, a natural tendency of transforming
such spaces into compact ones has risen. This process is frequently called
compaction, and usually it consists of adding some new elements (called
points at infinity) to the initial space (e.g. + and – to R,  to C, etc.)

such that the forthcoming space becomes compact.
2.25. Comment. The above topological structures represent (in the present
framework) the most general structures of continuity. There are many
extensions of these structures, but according to the main purpose of this
book, later on we pay more attention to the metric, normed, Euclidean, and
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other particular spaces, where the concrete (i.e. numerical) measurements
are eloquent.

From a general point of view, we can say that topology is a qualitative
theory if compared to geometry, algebra or other branches of mathematics,
physics, etc. The specific topological concepts like convergence, continuity,
compactness, etc., express properties that cannot be measured, or described
by numbers, because in fact, they represent conclusions of infinitely many
measurements, and infinite sets of elements (e.g. numbers).

Choosing some topology as a mathematical instrument of studying a
particular phenomenon is an evidence of the investigator’s belief in the
continuous nature of that problem. The comparison of the theoretical
results with the practical experience decides how inspired is the continuous
vision of the problem. Obviously, this point of view is not always adequate,
i.e. there exist many non-continuous aspects in nature, which need other
kind of mathematical structures to be modeled. By philosophical duality,
the essential feature of these problems is discreteness. Nowadays, discrete
phenomena represent the object of the discrete system theory, including the
computer engineering.

If we limit ourselves to topological structures, then the sense of discrete
reduces to “space endowed with the discrete topology”, that is an extreme
case when any subset of the space is open. From this point of view, each set
may be considered discrete, which however is not always the case. On the
other hand, the continuous sets are thought as “compact and connected”,
which have no discrete counterpart. So, we may conclude that it is difficult
enough to develop the great idea of a “continuous-discrete dualism of the
world” exclusively using topological structures. Therefore we need a larger
framework, where some structures of discreteness are justified to be dual to
topologies, but not particular topologies. Without going into details, we
mention that such structures have been proposed in [BT3]. In brief, the idea
is that, instead of defining a topology τ by filters τ(x) of neighborhoods at
each xVτ(x), to consider a dual structure, called horistology, which is
specified by ideals of perspectives (x), such that xP whenever P(x).
The terminology is naturally inspired from relativity theory, where super-
additivity is accepted as a real physical fact.

The coexistence of continuity and discreteness in the real world, which is
reflected in the topology – horistology dualism, is also met at many other
particular levels, defined by metrics, norms, or inner products. Respecting
the traditional framework of the classical Analysis, we shall not discuss
about horistologies any further, and we let the reader to appreciate whether
such qualitative structures are useful to study discreteness.
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PROBLEMS § III. 2.

1. Let (D,  ) be a directed set, and let f, g : DR be nets. Show that:

(i) If the net f is monotonic (i.e. f (d) f (e) whenever de for some
D), and bounded (i.e.MR such that f (d)M whenever d), then f

is convergent (the limit being always unique in R);

(ii) If f and g are convergent nets, and f (d)g(d) holds at any d for
someD, then also lim f  lim g;
(iii) If the nets f and g are convergent to the same limit l, and h : DR is

another net for which f (d)h(d)g(d) holds at any d for some D,
then h is convergent to l too.
Hint. Repeat the proof of the similar properties for real sequences.

2. Show that any closed part F, of a compact set K, is compact. Analyze the
case KR and F = KQ, where F, generally not closed any more, is

alternatively referred to as a part of R and Q.

Hint. If A is an open cover of F, then A {{F} is an open cover of K.

The open sets in topology of Q are intersections of the form QG, where

G is open in R.

3. Let f : (a, b) R be a continuous function. Show that:







 


RR )(lim,)(lim xfxf

bxax
(f is bounded).

Is the converse implication generally valid?
Hint. f can be continuously prolonged to the compact [a, b]. Consider the
example g : (0, 1)R, where g(x) = sin x –1.

4. Compare )(lim
0

xg
x

to ))((lim
0

xfg
x




if the functions f, g : [0, 1]  R

have the values f (0) = g(0) = 1 and f (x) = g(x) = 0 at each x(0, 1].
Hint. )(lim

0
xg

x
= 0, while ))((lim

0
xfg

x



=1.

5. Show that for each pair of compact (connected) sets A, B(i.e. R or

C), the sets A+B, and AB are also compact (connected). Comment A : B.

Hint. Use the fact that the operations of addition and multiplication are
defined by continuous functions on the product space.
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§ III.3. LIMITS AND CONTINUITY IN METRIC SPACES

It is easy to see that each contraction of a metric space S is continuous
on this space relative to the intrinsic topology. More than this, because in
metric spaces we can “correlate” the neighborhoods of different points by
considering that the spheres of equal radiuses S(x, r) and S(y, r) have the
same size, we deduce a possibility to compare the continuity at different
points. Based on this feature of the metric spaces, we remark a uniform
behavior of the contractions from the continuity point of view. These ones,
and many similar cases lead us to consider the following type of continuity
in the metric space framework:
3.1. Definition. Let (X, ) and (Y, ) be metric spaces, and let A be a

(non-void) subset of X. We say that the function f : AY is uniformly

continuous on A iff for any > 0 there exists > 0 such that the inequality
 (f (x), f (y)) <  holds whenever (x, y) < . In particular, a function can be
uniformly continuous on the entire space X.

The following theorem is frequently used to establish that some functions
are uniformly continuous.
3.2. Theorem. Let (X, ) and (Y, ) be metric spaces, and let K X be a

compact set. If the function f : K Y is continuous on K, then it is also
uniformly continuous on K.
Proof. The continuity of f at x allows us to assign some x > 0 to each > 0,
such that (x, y) < x implies (f (x), f (y)) < / 3 . Since K is compact, and

the family A = {S(x,
3
1 x): xK} is an open cover of K, it follows that

there exists a finite set {x1, x2, …, xn}K (hence a finite sub-family of A )

such that K  {S(xi, 3
1 x): i=1, 2, …, n}. Consequently, for each xK we

can find some i{1, 2, …, n} such that (x, xi) <
ii xx  

3
1 , and so we

secure the inequality (f (x), f (xi)) < / 3 .

We claim that  =
3
1 min{

ix : i=1, 2, …, n} is right to fulfill the condition

of uniform continuity of f. In fact, let us arbitrarily chose x, yK such that
(x, y) < , and let i, j {1, 2, …, n} be indices for which the inequalities

ixixx 
3
1),(  and

jxjxx 
3
1),(  are valid. It follows that

(xi, xj)  (x, xi) + (x, y) + (y, xj) < max {
ji xx  , },

which shows that f (xi, xj) < / 3. Finally, using the inequality
 (f(x), f(y))   (f(x), f(xi)) +  (f(xi), f(xj)) +  (f(xj), f(y))

we deduce that  (f(x), f(y)) <  whenever (x, y) < . }
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3.3. Remark. So far we referred to the size of the neighborhoods in metric
spaces when we discussed about fundamental sequences and about uniform
continuity. We mention that such aspects are specific to the so called
uniform topological spaces. In this framework, theorem 3.2 from above
takes a very general form, as follows: If X and Y are uniform topological

spaces, AX is compact, and f : AY is continuous on A, then f is
uniformly continuous on A.

Another example of specific topological properties, which rise in metric
spaces, refers to compactness. In fact, compact sets are always closed, but
in addition, in metric spaces they are also bounded. More exactly:
3.4. Proposition. If (S, ) is a metric space, and KS is a compact set

relative to the corresponding metric topology , then K is bounded.
Proof. Let us consider the following family of open spheres

A = {S(x, n): nN},

where x is fixed (in K, say). Because A covers any subset of S , and K is

compact, it follows that K has a finite sub-cover A *. In addition, nm

implies S(x, n) S(x, m), hence the greatest sphere from A * contains K.

The existence of such a sphere means that K is bounded. }

The possibility of expressing compactness in terms of convergence is an
important facility in metric spaces. To develop this idea, we will consider
other types of compactness, namely:
3.5. Definition. A set K in a metric space (S, ) is said to be sequentially
compact (briefly s.c.) iff each sequence (xn) from K contains a sub-
sequence (

knx ), which is convergent to some x0 K.

We say that the set KS is  – compact (briefly ε – c.) iff for any  > 0

there exists a finite family of open spheres of radiuses  , which covers K.
3.6. Examples. (i) Every compact set is s.c. as well as  – c. (obviously).
There are still  – c. sets, which are not compact, as for example

K = {
n
1 : nN*},

in R, relative to the Euclidean metric.

(ii) The  – c. sets are bounded, since the union of two spheres is contained
in a greater one. The converse is generally false, i.e. boundedness is not
enough for – compactness, as in the case of the balls in CR([a, b]),

endowed with the sup norm.
(iii) The same set K from the former example (i) shows that the  – c. sets
are not necessarily s.c. However, the converse is valid, namely:
3.7. Proposition. Let (S, ) be a metric space. If KS is a sequentially

compact set, then it is also  – compact.
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Proof. Let us suppose that, by contrary, there exists some > 0 such that K
cannot be covered by finite families of open spheres of radius . Then,
starting with an arbitrary x0K, and this , we can find the elements

x1K \ S(x0,  ), x2K \ [S(x0, )S(x1, )], …
The resulting sequence (xn) has the property that (xn, xm) holds for all

n, mN, which makes it unable to contain convergent subsequences. }

To establish the main result concerning the compact sets in metric spaces,
namely the equivalence between compactness and sequential compactness,
we need the following:
3.8. Lemma. If K is a s.c. set in a metric space (S, ), and A is an open

cover of K, then there exists > 0 such that for all xK we have S(x, ) A
for some AA .

Proof. Let A = {AiG : iI} be a cover of K, and let us suppose that the

assertion isn’t true, i.e. for any > 0 there exists xK such that S(x, )Ai

holds for all iI. In particular, taking  =
n
1 , where nN*, we find xnK

such that S(xn, n
1 )Ai for all iI. Because K is supposed to be s.c, the

resulting sequence (xn) contains a subsequence, say (
knx ), convergent to

some  K. Let jI be the index for which  Aj. More that this, because
Aj is open, we have S(, r)Aj for some r > 0. On the other hand, from the

convergence of (
knx ) to  it follows that

knx S(,
2
r ) holds if k overpasses

certain value k0. If we take k great enough to obtain
2

1 r
nk

 , then finally

S(
knx ,

kn
1 ) S(, r) Aj, contrarily to the initial hypothesis. }

3.9. Theorem. A set K in a metric space (S, ) is compact if and only if it
is sequentially compact.
Proof. Each compact set in S is s.c. since the metric spaces are separated.

Conversely, let us suppose that KS is sequentially compact, and let

A = {Ai : iI} be an open cover of K. Using the above lemma, let > 0 be
the number for which to each point xK there corresponds jI such that
S(x, )  Aj. Finally, to obtain the necessary finite sub-cover of K we may
proceed as in proposition 3.7. }

3.10. Corollary. Every closed and bounded interval [a, b]R is a compact

set (relative to the Euclidean topology of R).

Proof. In terms of compactness, the Cesàro-Weierstrass theorem (e.g. see
II.1.19) says that [a, b] is sequentially compact.

Because the Euclidean topological spaces are particular metric spaces,
there are specific properties in addition to the metric ones, as for example:
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3.11 Theorem. A set K  n, where nN*, is compact if and only if it is

closed and bounded.
Proof. The compact sets are closed in any separated topological space.
They are bounded in each metric space (see proposition 3.4. from above),
hence in n they are closed and bounded.

Conversely, if K is bounded, then K S (0, r) holds for some r > 0.

Because S (0, r) is sequentially compact, and K is a closed part, it follows
that K itself is s.c., hence, according to theorem 3.9, it is compact. }

The following theorem shows that the compactness of the closed and
bounded sets is specific to finite dimensional spaces:
3.12. Theorem. Let (L, || . ||) be a linear normed space, and let

K = S (0, r) = {x L : ||x||1}

be the closed unit ball. If K is compact, then dim L is finite.

Proof. Because V = S(0,
2

1
) is open, and A = {x + V : xK} covers K, it

follows that there exist x1, x2, …, xn K such that
K (x1+V) (x2+V) … (xn+V) .

If L0 = Lin{x1, x2, …, xn} denotes the linear space spanned by these vectors,

then dim L0n, hence it is closed in L as a finite dimensional subspace.

Because 2V  K  L0 + V, and  L0  L0 for every  0, we obtain the

inclusion V  L0 +
2

1
V, and successively

K  L0 +
2

1
V  L0 +

4

1
V …  L0 + 2– n V  … .

Consequently, K 0L = L0. Since  L0  L0 for each , and KL0,

we have  K L0. On the other hand, K = L, i.e. for every x L there

exist  (e.g.  = ||x|| ) and x*K such that x* = x. Consequently, we
deduce that L L0, hence dim L  dim L0  n. }

3.13. Remarks. a) The above theorem remains valid in the more general
case of topological vector spaces, i.e. any locally compact topological
vector space (that has a neighborhood of the origin with compact closure)
has finite dimensions.
b) Using the above results we can find more examples of compact sets. In
particular, if a = (a1, a2 , … , an), b = (b1, b2, … , bn) Rn, then the closed

n-dimensional interval [a, b] = [a1, b1] x … x [an, bn] is a compact set in Rn.

Since the notion of interval is based on order, this construction doesn’t
work in the complex space Cn. However, using the above theorem 3.12 in

the case L = , we obtain a similar examples by replacing the closed
intervals by closed spheres.
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c) Other specific properties in Euclidean spaces, besides those involving
compactness, derive from the fact that n represents a Cartesian product. In
addition, the Euclidean topology of n can be considered a product
topology of Γ, n times by itself. Therefore, plenty of properties concerning
the limiting process in n, e.g. continuity and convergence, naturally reduce
to similar properties in . In order to make more explicit this fact we have
to precise some terms and notation:
3.14. Definition. Let XØ be an arbitrary set, and f : X  n, be a vector
function for some nN*. As usually, we define the projections Prk : n

by Prk(y1, …, yn) = yk for all k= n,1 . The functions fk = Prk f , where

k= n,1 , are called components of f , and for every xX we note

f (x) = (f1(x), f2(x), …, fn(x)).
If f is a (generalized) sequence, i.e. X = N (or a directed set D), then the

components of f are called component sequences, and the general term of
the vector sequence is noted f (p) = yp = (yp

1, …, yp
n) for each pN.

Alternatively, the sequence is written as the set of n component sequences,
namely

(yp) = ((yp
1), …,(yp

n)).
In particular, if n = 1, and  = C = R2, the components of f are named

real and imaginary parts of f. Most frequently, f is defined on a domain
(i.e. open and connected set) DC, and we note f :D C, where

f (z) = P(x, y) + i Q(x, y)
at any z = x + iy D. In brief, f = P + iQ, where P = Re f and Q = Im f
are the components of f.

If f is a sequence of complex numbers, i.e. f (n) = zn = xn + iyn C is

defined at any nN, then (xn) is the sequence of real parts, and (yn) is the

sequence of imaginary parts of f (alternatively noted (zn)).
3.15. Theorem. Let (X, ) be a topological space, and let f : Xn be a
function of components f1, …, fn . If x0 X is fixed, then:
a)  = ( 1, …,  n)  n is the limit of f at x0 iff each component  k is the

limit of fk at x0 , and
b) f is continuous at x0 iff each fk is continuous at this point.
Proof. a) We may either extend the proposition III.2.10 by induction upon
nN* , or directly involve the Euclidean metric  of n, namely

( , y) = 



n

k
kk y

1

2
 ,

where  = ( 1, …,  n)  n and y = (y1, …, yn)  n. Following the
second way, we put forward the double inequality
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| m – ym|  ( , y)  



n

k
kk y

1

 ,

which holds for each m = n,1 (the second inequality is the triangle’s rule!).

If we consider the vector y = f (x) of components yk = fk(x), where x is
arbitrary in a neighborhood V(x0), then we may express the existence of
the limit  by the condition:

εxf,ρVxxτVε  ))(()(0 0  .

Similarly, the existence of the limit  k for each k = n,1 means that

 VxthatsuchxVk )(0 0 | k – yk| < k .

The first inequality from above shows that
( , y) <   | k – yk| < 

hence the existence of  assures the existence of  k for each k = n,1 .

Conversely, let the limits  k exist for all k = n,1 , and let  > 0 be given.

If we introduce k =  / n in the conditions concerning each  k , we obtain a

set of neighborhoods Vk , so we may construct )(},1:{ 0xnkVV k  .

It is easy to see that xV leads to ( , y) < , hence  exists.
b) In addition to a) we take  = f (x0), which is equivalent to  k = fk(x0) for

all k = n,1 . }

3.16 Corollary. If D is a domain in the complex plane C, and the function

f : DC has the components P = Re f and Q = Im f, then the limits of f, P

and Q at any z0 = x0 + iy0 D are in the relations:
a)  =  + i =

0

lim
zz

f (z) iff

 =
),(),( 00

lim
yxyx 

P(x, y) and  =
),(),( 00

lim
yxyx 

Q(x, y)

at the corresponding point (x0, y0) R2;

b) f is continuous at z0 iff both P and Q are continuous at (x0, y0).
Proof. We may identify C to R2 from topological point of view, and reduce

the limit of f to those of its components. }

3.17. Theorem. A vector sequence (yp) = ((yp
1), …, (yp

n)), pN, in n, is

bounded (convergent, or fundamental) iff all its component sequences (yp
k),

k = n,1 , are so.

Proof. As in the proof of theorem 3.15, we may use the inequalities

| xm – m
py |  ρ(x, yp)  




n

k

k
p

k yx
1

,

which hold for any x = (x1, …, xn), pN, and m = n,1 . The analysis of the

boundedness involves a fixed x. To establish the property of convergence,



Chapter III. Continuity

162

we take x =
p

lim yp . Similarly, to study the Cauchy’s property, we may

replace x by yq . }

3.18. Corollary. A sequence of complex numbers is bounded (convergent,
fundamental) iff both sequences of real and imaginary parts are bounded
(convergent, respectively fundamental).
Proof. We consider C = R2 in the above theorem. }

3.19. Corollary. The Euclidean spaces n are complete for any nN*.

Proof. According to the theorem in III.2, R is complete, i.e. we have

convergent  fundamental
for any sequence of real numbers. Consequently, this identity of properties
holds in C = R2, as well as in any Cartesian product n . }

The above properties concerning the sequences in n can be easily
extended to nets (i.e. generalized sequences). The detailed analysis of this
possibility is left to the reader.
3.20. Remark. In practice we frequently face the problem of comparing the

convergence of the series (a)  nx , (b)  nx , and (c)
2

 nx in a scalar

product space, particularly when the system {xn : nN} is orthogonal. As a

general rule, the convergence of the series (b) implies that of (a) and (c).

The real series 


n

n)1(
shows that none of the converse implications is

generally true. Using the series of terms yn = 1/n , and zn =
n

n)1(
, we see

that the series of types (a) and (c) do converge independently. However, the
equivalence (a) (c) holds for series of orthogonal elements. In fact, using
the continuity of the scalar product, if x = nx , then the following

extended Pythagoras’ formula holds

<x, x> = < nx , x> =  <xn, x> =
2

 nx .

Consequently, if
2

 nx is convergent, and sp, sq are some partial sums of

the series  nx , then (assuming p < q), we have

||sq – sp ||2 =

2

1




q

pn
nx .

Even so, the convergence of (b) is not generally implied by the others, as in

the case of xn =
Ni

i
n

n 










1
, where i

n is the Kronecker delta.
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PROBLEMS §III.3.

1. Formulate the main topological notions (e.g. adherence, interior, limit,
convergence, continuity, etc.) in terms of metrics.
Hint. For example,

0

lim
xx

 f (x) takes the form

00   such that (x, x0) <   (f (x),  ) < .

2. Let (xn) be a sequence in a metric space, such that (x2n) and (x2n+1) are
convergent subsequences. Show that the sequences (xn) and (x3n) are
simultaneously convergent.
Hint. Any subsequence of a convergent sequence is convergent to the same
limit. Conversely, the convergence of (x3n) implies

lim x2n = lim x2n+1 = lim xn.

3. Show that the function f :    ,1,1 , expressed by f (x) = x +
x

1
, has

no fixed point, even if |f (x) – f (y)| < |x – y| at any x y.
Hint. x = f (x) is impossible because 1/x  0. Because of the relation

|f (x) – f (y)| = (1 –
xy

1
)|x – y|,

the claimed inequality is obvious, but f is not contraction.

4. Let S denote the set R or any interval (– , a], [a, b], [b, + ) of R, and

let f : S S be a derivable function on S. Show that f is a contraction if

there exists c < 1 such that |f /(x)|c at any x S. In particular, analyze the
possibility of approximating a solution of the equation

x =  sin x +  cos x + 
making discussion upon , , R.

Hint. Use the Lagrange’s theorem about finite increments, which assures
the existence of  (x, y) such that f (x) – f (y) = f /()(x – y) holds
whenever x, y  S, with x < y. Write the particular equation using the

function f (x) = 22   sin (x + ) + , where f is a contraction if

22   < 1; otherwise the method of successive approximation doesn’t

work, even if the equation always has at least one solution.

5. Let (X, ), (Y, ) and (Z, ) be metric spaces. Show that if the functions

f : XY and g : YZ are uniformly continuous, then g f is uniformly
continuous too. Is the converse implication true?
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Hint. The property is directly based on definitions. The converse assertion
is generally false, as for X = Y = Z = R, g =  and

f (x) =








QR

Q

\if xx

if xx

6. Let us fix a set A  R (or A  C). Show that if any continuous function

f : AR is bounded, then A is compact.

Hint. Taking f (x) = x, it follows that A is bounded. For any   A \ A , the
function f(x) = |x – | – 1 is continuous but unbounded, hence we

necessarily have A = A , i.e. A is closed.

7. Let (X, ) and (Y, ) be metric spaces. We say that f : X Y is a
Lipschitzean function iff there exists L > 0, called Lipschitz constant, such
that the inequality

(f (x), f (y)) L (x, y)
holds for arbitrary x, y X. Show that, in the case (X, )  (Y, ), the
following implications hold:

f is a contraction  f is Lipschitzean 
 f is uniformly continuous  f is continuous,

but none of their converses is generally true. More particularly, if X is an

interval of R, place the property “f has (bounded) derivative on X ”

between the above properties.

Hint. Use functions like ax2 or x sin
x

1
on intervals of R. Any function with

bounded derivative is Lipschitzean. The function x is a counter-example
for the converse implication.

8. Let X  be an arbitrary set. Find a metric on X such that all the real
functions f : X R (where R is Euclidean) are continuous on X.

Hint. The continuity of the characteristic functions attached to the point-
wise sets {x} shows that the only possible topology on X is discrete.
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§ III.4. CONTINUOUS LINEAR OPERATORS

The linear functions play an important role in Analysis because of their
simple form and convenient properties. For example, they are used in local
approximations of a function, in integral calculus, in dynamical systems
theory, etc. When the functions act between linear spaces and they are
linear, we use to call them operators. In particular, the term functional is
preferred whenever the target space is , i.e. it takes scalar values.

In this section we mainly study the continuous linear functionals and
operators acting between normed linear spaces, when continuity and other
topological properties can be considered relative to the intrinsic topologies
of the involved spaces. For example, the operator U:(X, || . ||X) (Y, || . ||Y)

is continuous at the point x0  X iff for each ε > 0 there exists δ > 0 such
that ||U(x) – U(x0)|| < ε holds whenever || x – x0 || < δ. Genarally speaking, if
there is no danger of confusing the norms on X and Y, we may renounce

the distinctive notation X , Y , and mark all of then by || . ||.

According to the following property we may simply speak of continuous
linear operators without mentioning the particular point x0 any more.
4.1. Proposition. Every linear operator U: (X, || . ||)  (Y, || . ||) is

continuous on X (i.e. at each point of X ) if and only if it is continuous at

the origin 0 X.
Proof. The essential part is the “if” implication, so let U be continuous at 0,
and let x0  X and ε > 0 be arbitrary. Using the continuity of U at 0, we
find δ > 0 such that ||y|| < δ implies ||U(y)|| < ε. If we note y = x – x0, then
U(x) – U(x0) = U(y) follows from the linearity of U. Consequently, the
condition ||x – x0|| < δ implies ||U(x) – U(x0)|| < ε. }

4.2. Corollary. The continuity of the linear operator is uniform.
Proof. In the proof of the above proposition,  depends only on , i.e. it is
the same for all x0 X . }

4.3. Definition. Let (X, || . ||) and (Y, || . ||) be normed linear spaces, and let

U: X Y be a linear operator. We say that U is bounded on X iff there
exists a real number μ > 0 such that the inequality

||U(x)||  μ||x||
holds at any xX. The set of all bounded operators between X and Y is

noted by B(X, Y ). In particular, the set B(X, ) of bounded functionals

on X is called topological dual of X , and noted X / .

The following theorem explains why for linear operators we may identify
the notions of boundedness and continuity.
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4.4. Theorem. If U: (X, || . ||)  (Y, || . ||) is a linear operator, then it is
continuous if and only if it is bounded.
Proof. We easily see that a bounded operator is continuous at the origin 0.
Consequently, according to proposition 4.1, it is continuous on X .

Conversely, if U is continuous at the origin 0X , then for arbitrary ε > 0,
hence also for ε = 1, there exists δ > 0 such that ||x|| < δ implies ||U(x)|| < 1.
Except 0, where the condition of boundedness obviously holds, for any

other xX we have || )(
2 x

 x|| < δ, hence ||U( )(
2 x

 x)|| < 1. Since U is

linear, the inequality ||U(x)|| < )(2
 ||x|| holds at all xX . This shows that

the condition of boundedness is verified with μ = 
2 . }

4.5. Theorem. The functional
*

 : B (X , Y ) R+ , defined by
*

U = inf { μ R+ : ||U(x)|| < μ ||x|| for all x X },

is a norm. In addition, this norm also allows the following expressions:
*

U = sup {||U(x)||: ||x||1} =

= sup {||U(x)||: ||x|| = 1} = sup








 0:
)(

x
x

xU
.

Proof. Obviously, B (X , Y ) is a linear sub-space of (L (X , Y ), +, .). To

establish that
*

 is a norm, we have to prove the conditions [N1], [N2] and

[N3] from the definition I.4.15. For example [N1], i.e.
*

U = 0 U = 0, is

directly based on the definition of
*

 .

To prove [N2] it is enough to remark that for any λ  0 we have

||( λU)(x)|| μ ||x|| ||U(|λ| x) 



|| | λ | x ||,

because it leads to the following expression of
*

U :
*

U = inf { μ > 0 : ||( λU)(x)|| < μ ||x|| for all x X } =

= |λ| inf








 XyallforyyU







)(:0 .

   The case λ = 0 in [N2] is trivial.
Finally, for [N3], let λ and μ be positive numbers showing that U and V

are bounded operators. Because ||U(x)|| < μ||x|| and ||V(x)|| < λ||x|| imply
||(U + V)(x)||  ( λ + μ)||x|| ,

it follows that 
*

VU  + . It remains to take here inf .

To conclude,
*

 is a norm.
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To obtain the other forms of
*

U , let us note ν = sup








 0:
)(

x
x

xU
. In

other words, for arbitrary ε > 0, and x 0, we have ||U(x)|| < (ν + ε)||x||, i.e.
the number ν + ε verifies the condition of boundedness. Consequently, 

*
U   ν + ε holds with  arbitrary ε > 0, hence also 

*
U   ν. 

Conversely, if μ is a number for which
x

xU )(
< μ, then we can show that

ν  μ holds too. First, because
*

U is the infimum of such μ’s, it follows

that ν 
*

U . Thus we may conclude that
*

U = sup








 0:
)(

x
x

xU
.

Because ||
x

1
x || = 1, and

x

xU )(
= ||U(

x

1
x)||, we obtain

sup {||U(x)|| : ||x|| = 1} = sup








 0:
)(

x
x

xU
.

Finally, from {xX : ||x|| = 1}  {xX : ||x||1}, we deduce that
sup {||U(x)|| : ||x|| = 1}  sup {||U(x)|| : ||x|| 1},

while from ||U(x)||  ||U(
x

1
x)||, which is valid whenever 0 < ||x||1, we

obtain the converse inequality. }

4.6. Corollary. For every U  B (X , Y ) and xX we have

||U(x)|| 
*

U ||x||.

Proof. According to the formula
*

U = sup








 0:
)(

x
x

xU
, it follows that

x

xU )(


*
U holds at any xX \ {0}. }

4.7. Corollary. If U :X X is a linear operator in the scalar product space

(X , < . , . >), then UB (X , X ) if and only if the inequality
| <U(x), y> |  μ ||x|| ||y||

holds for some μ > 0, at all x, y X .
Proof. According to theorem 4.4, if U is continuous, then it is bounded,
hence there exists μ > 0 such that ||U(x)||  μ ||x|| holds at each xX . Using
the fundamental inequality of a scalar product space, we obtain

| <U(x), y> |  ||U(x)|| ||y||  μ ||x|| ||y||.
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Conversely, let us suppose that the inequality | <U(x), y> |  μ ||x|| ||y||
holds at each x, y X . In particular, for y = U(x), we obtain:

||U(x)||2  μ ||x|| ||U(x)||.
Considering the essential case U(x)  0, this inequality shows that U is a
bounded operator. }

4.8. Remark. In many practical problems (e.g. finding the differential of a
given function) it is important to know the form of the linear functionals on
a particular linear space. So far we can say that each linear functional on Γ
has the form f (x) = c x for some c Γ. More generally, the general form of
the linear functionals on n is

f (x) = a1 x1 + a2 x2 + … + an xn = < a, x >,
where a = (a1 , a2 , … , an ) n depends on f. It is a remarkable fact that a
similar form is kept up in all Hilbert spaces:
4.9. Theorem. (F. Riesz) For every linear and continuous functional f in a
Hilbert space (X , < . , . >) there exists a vector y X such that:

a) f (x) = < x, y > at any x X , and
b) || f || = ||y|| .
In addition, this vector is uniquely determined by f .
Proof. If f = 0, the assertion is proved by y = 0, hence we shall essentially

analyze the case f  0. Let L = f  (0) be the null subspace of f . Since f is
continuous, L is a closed linear subspace. Because LX holds in this case,

we can decompose the space as a direct sum X = L L┴ , where L┴  {0}.

If we fix some z  L┴ \ {0}, then f (z)  0, and to each xX we can attach

the element u = x –
)(

)(

zf

xf
z . Because f (u) = 0, we deduce that uL, hence

< u, z > = 0, and finally < x, z > –
)(

)(

zf

xf
< z, z > = 0. So we can evaluate

f (x) =




zz

zxzf

,

,)(
= < x,

2

)(

z

zf
z > ,

hence the asked element is y = )(zf ||z|| – 2 z .

In order to evaluate || f ||, we may start with the fundamental inequality
| f (x)| = |< x, y >|  ||x|| ||y||,

which shows that || f || || y||.
On the other hand, if x = y  0, the fundamental inequality becomes

equality, i.e.
y

yf )(
= || y||. Because || f || = sup









 0:
)(

y
y

yf
, it follows

that || f || || y||. The two contrary inequalities show that || f || = || y||.
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Let us suppose that y is not unique, and let y /  X be another element for

which the representation f (x) = < x, y / > holds at any xX . If compared to
the initial form f (x) = < x, y >, it shows that < x, y – y / > = 0 holds at each
x X . In particular, taking x = y – y /, we obtain || y – y / || = 0, which shows
that y = y /. Because this contradicts the supposition y  y / , we may
conclude that y is the single element in X for which a) holds. }

4.10. Remark. The above theorem shows that all the Hilbert spaces can be
identified with their duals, i.e. X = X / . This result has many important
consequences in the theory of the adjoint and self-adjoint operators, in
spectral theory, etc., as well as in practice (e.g. in Quantum Physics).

Because we mainly use linear functionals in order to develop the classical
Differential Calculus, we continue their study from some other point of
view, namely we will extend the above results to multi-linear continuous
functionals. In this framework the starting space has the form

X = X1 x X2 x … x X n ,

where (X k , || . ||k), k{1, 2, … , n}, are normed linear spaces over the same

field Γ. It is easy to see that (X , || . ||) is a normed linear space too, if the

norm || . ||: X R+ is expressed at any x = (x1, x2, …, xn)  X by

||x|| = max {||xk||k : k = n,1 }.

4.11. Definition. Let (X , || . ||) and (Y , || . ||) be normed linear spaces,

where X = X1 x X2 x … x X n is organized as in the previous remark. The

function U: X  Y is called multi-linear (more exactly n-linear) operator

(functional in the case Y = ) iff it is linear relative to each of its variables

xkX k , i.e. for all k = n,1 .

The 2 - linear functions are frequently called bilinear. Of course, it makes
sense to speak of “multi- …“ iff n > 1, but the results known for n = 1
should be recovered from this more general framework.

We say that the n-linear operator U is bounded iff there exists μ > 0 such
that the following inequality holds at any x = (x1, x2, …, xn):

||U(x)|| μ||x1||1 ||x2||2 … ||xn||n .

For the sake of shortness, we write ||U(x)||  μ π(x), where π(x) = 


n

k
kkx

1

.

The continuity of a multi-linear function refers to the natural (uniform)
topologies of (X , || . ||) and (Y , || . ||).

4.12. Examples. If we take X1 = X2 = Y = R, then the function f (x, y) = xy

is bilinear, but not linear. In the same framework, g(x, y) = x+ y is linear
but not bilinear, hence the notions linear and n-linear are independent. In
particular, 1-linear coincides with linear, but the term n-linear essentially
refers to n > 1. Both f and g from above are continuous functions, while the
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function h:CR
1(K) x CR

1(K) R, of values h(x, y) = x/(t0) y/(t0), where t0 is

fixed in the interior of the compact interval KR, is not continuous

relative to the norms ||xk||k = sup {|xk(t)|: tK}, k{1, 2} (see also problem
3 at the end of the section).

The above theorem 4.4 can be extended to n-linear operators.
4.13. Theorem. In the terms of the above definition, the n-linear operator
U is continuous on X if and only if it is bounded.

Proof. If U is continuous on X, then it is continuous at the origin of X too.
Let δ > 0 be the number that corresponds to ε = 1 in this condition of
continuity, i.e. ||x|| < δ implies ||U(x)|| < 1. Let x be a vector of components

xk  0k  X k for all k = n,1 , and let us note x* = (x1*, x2*, …, xn*), where

xk* =

kkxn2


xk for all k = n,1 . It is easy to see that || x*|| < δ, hence

||U(x*)|| < 1. Because U is n-linear, this inequality takes the form





nn

nn

n

xxn ...

1

)(2 11


||U(x1, …, xn)|| < 1,

or, equivalently, ||U(x)|| <

n
n











2
π(x). In this case, μ =

n
n











2
is the

constant in the condition of boundedness for U .

Otherwise, if xk = 0k for some k = n,1 , then U(x) = 0, hence the condition

of boundedness reduces to a trivial equality. So we conclude that U is a
bounded operator.

Conversely, let the n-linear operator U be bounded. In order to prove its
continuity at an arbitrary point x0 = (x1

0 , x2
0 , …, xn

0 ) X, we may evaluate

||U(x) – U(x0)|| =

=   




n

k
nkkknkkk xxxxxUxxxxxU

1
1

00
1

0
11

0
1

0
1 ),...,,,,...,(),...,,,,...,(




 
n

k
nkkkk xxxxxxU

1
1

00
1

0
1 ),...,,,,...,(







 
n

k
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k
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k
k xxxxxx

1
11

0

1

0
1

1

0
1 ...... .

Now let us remark that ||x – x0|| < 1 implies
||xk||k  ||xk – xk

0|| + ||xk
0||k < 1 + ||xk

0||k .

If we note 



n

k

x
1

0 )( (1 + ||xk
0||k), then we may write
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||U(x) – U(x0)||   μν(x0)(


n

k 1

||xk – xk
0||)n μν(x0)||x – x0||.

To conclude, for each ε > 0 there exists δ = min {1,
)( 0xn 




}, such that

||x – x0|| < δ implies ||U(x) – U(x0)|| < ε, i.e. U is continuous at x0 . }

4.14. Remark. It is easy to see that the set L (X, Y ), of all n–linear

operators on X = X1 x X2 x … x Xn , is a linear space too. More than this,

the set Bn(X, Y ), consisting of all continuous n-linear operators (which
are also bounded, according to the above theorem), forms a linear space
over Γ, and for each U Bn(X, Y ) it makes sense to consider

*
U = sup {||U(x)||: ||x||1}.

Following the same steps as in theorem 4.5 from above, we obtain a
similar result relative to continuous n-linear operators, namely:

4.15. Theorem. The functional
*

 : Bn(X, Y )R+ is a norm.

Finally, we analyze some problems of isomorphism between spaces of
operators, which will be necessary to study the higher order differentials.
4.16. Definition. Let (X,  ) and (Y,  ) be normed linear on the same

field Γ. These spaces are said to be metrically isomorphic iff there exists a
function : X  Y, called metric isomorphism, such that:

[I1]  is a 1:1 correspondence between X and Y;

[I2]  is linear, i.e.  (α x + β y) = α  (x) + β  (x) holds at each x, y  X
and α, β Γ

[I3]  preserves the norm, i.e. we have ||  (x) || = ||x|| at each x X.
If only conditions [I1] and [I2] hold, we say that these spaces are linearly

isomorphic, and  is called linear isomorphism.
4.17. Examples. The finite dimensional linear spaces over the same Γ are
linearly isomorphic iff they have the same dimension. Even so, they are not
metrically isomorphic, as for example the Euclidean Γn, and the space of all
polynomial functions of degree strictly smaller than n, defined on some
compact set, and endowed with the sup-norm.

The above theorem 4.9 (due to Riesz) shows that each Hilbert space is
metrically isomorphic with its topological dual.

The following theorem establishes an isomorphic representation of the
operators whose target space consists of operators.
4.18. Theorem. Let (X1, ||.||1), (X2, ||.||2) and (Y, ||.||) be normed spaces, and

let the space X = X1 x X2 be endowed with the above product norm ||.||. If

the spaces (B2(X, Y ),
*

 ) and (B(X1, B(X2, Y )),
**

 ) are normed

according to theorem 4.5 and 4.15, then they are metrically isomorphic.
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Proof. We start with the construction of the isomorphism. More exactly, to
each U B2(X, Y ), we have to attach a bounded linear operator defined at

each x X1. Primarily we consider an operator Ux : X2 Y, of values

Ux(t) = U(x, t) at any t X2. Because U is a continuous bilinear operator, it

follows that Ux is continuous and linear, hence Ux B(X2, Y ).

Now we may construct U: X1 B (X2, Y ), by the formula U(x) = Ux .

Obviously, at each x, y  X1, t X2 , and α, β Γ, we have:
U(αx + βy)(t) = Uαx+βy(t) = U(αx + βy, t)= αU(x, t) + βU(y, t) =

= αUx(t) + βUy(t) = (αUx + βUy)(t) = (αU(x) + βU(y))(t) .
Consequently, U(αx + βy) = αU(x) + βU(y), i.e. U is linear.

In order for us to show that U is continuous, we may note the norm of

B(X2,Y ) by
*
2

 , and we evaluate

*
2

)(xU =
*
2xU = sup{||Ux(t)|| : ||t||2 1} = sup{||U(x, t)|| : ||t||2 1}

Uofcont
 sup{μ ||x||1 ||t||2 : ||t||2 1}  μ ||x||1.

Consequently, U B(X1, B(X2, Y )) .
On the other hand, we may interpret this construction as a description of

the function : B2(X, Y )  B(X1 , B(X2 , Y )), of values

 (U) = U .
The rest of the proof is a study of 

 is injective. In fact, if  (U) =  (V), then U(x) = V(x) must hold at
each xX1. From Ux = Vx it follows that Ux(t) = Vx(t) at each tX2.

Consequently, we have U(x, t) = V(x, t) at any x X1 and t X2, i.e. U = V.

 is surjective. If UB(X1 , B(X2, Y )), then at each x X1 we have

U(x)B(X2, Y )), hence the operator U: X1 x X2 Y is well defined by
considering U(x, t) = (U(x))(t). It is easy to see that U is a continuous
operator, and  (U) =U.
 is linear. If U, V  B2(X, Y ), and α, β  Γ, then

α  (U) + β  (V) = α U + β V ,
and at every x X1 we have

(α U + β V)(x) = α U(x) + β V(x) = α Ux + β Vx.
Furthermore, at each t X2 , we have

(α Ux + β Vx)(t) = α Ux(t) + β Vx(t) =
= α U(x, t) + β V(x, t) = (α U + β V)(x, t) = (α U + β V)x(t),

which shows that α Ux + β Vx = (α U + β V)x .
In other terms, the equality

α U (x) + β V (x) = ( α U + β V )(x)
holds at any x X1, i.e. fulfils the condition

(α  (U) + β  (V))(x) =  (α U + β V)(x).
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Because x is arbitrary, we obtain
α  (U) + β  (V) =  (α U + β V).

 preserves the norm. In fact, for each U B2(X, Y ), we have :
**

)(UΦ =
**

U = sup {
*

)(xU : ||x||1 1} = sup {
*

xU : ||x||11} =

= sup {[ sup {||Ux(t)|| : ||t||2 1}] : ||x||11} =
= sup {||U(x, t)||: ||x||11, and ||t||21} =

= sup {||U(x, t)||: ||(x, t)||  1} =
*

U .

To conclude,
**

)(UΦ =
*

U . }

4.19. Remark. For practical purposes it is useful to know more particular
bilinear functions. For example, in real Hilbert spaces, we may generate
bilinear functions by linear operators, according to the formula

f (x, y) = < x, Uy>.
In particular, each square matrix A with real elements generates a bilinear

function on Rn, according to a similar formula, f (x, y) = < x, Ay>.

These examples make use of the fact that the scalar product itself is a
bilinear function on real spaces. For the case of a complex space, there is
another theory that takes into consideration the so called skew symmetry of
the scalar product, and involves Hermitian operators and matrices, self-
adjoint operators, general inner products, etc. Some elements of this sort
will be discussed later.

The following proposition shows that the bilinear functions in the above
examples have the most general form (in that frame).
4.20. Proposition. If (X, < . , . >) is a real Hilbert space, then to each

continuous bilinear function f : X x X R there corresponds a continuous

linear operator U : X  X such that the equality
f (x, y) = < x, Uy >

holds at each x, y  X.

Proof. Whenever we take yX, it follows that the function f ( . , y) : X R

is continuous and linear. Then, according to the Riesz’ theorem, there
exists y*X such that f (x, y) = < x, y* > at any xX. Let us define U by
U(y) = y*. This operator is linear because for all U(y) = y*, U(z) = z*, and
α, βR, we deduce that the following equalities are valid at each xX :

< x, U(αy + βz) > = f (x, αy + βz) = αf (x, y) + βf (x, z) =
= α < x, U(y) > + β < x, U(z) > = < x, αy* + βz* > .

According to the above theorem 4.13, f is bounded, hence there exists a
real positive number μ, such that |f (x, y)|  μ ||x|| ||y|| holds at any x, y X .
In particular, at x = U(y), this inequality becomes

||U(y)||2  μ ||U(y)|| ||y|| ,
which proves the boundedness of U. }
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4.21. Corollary. For each bilinear function f : Rn x Rn R there exists a

matrix AMn(R) which represents f in the sense that f (x, y) = < x, Ay >

holds at any x, yRn. More exactly, if we note the transposed matrix by the

superscript T, so that (x1, x2, …, xn) = XT, and (y1, y2, …, yn) = YT represent
the vectors x and y in some base B = {e1, e2,…, en} of Rn, then

f (x, y) = XT A Y = 


n

ji 1,

ai j xi yj ,

where A consists of the elements ai j = f (ei, ej ), for all i, j = n,1 .

Proof. We represent the above operator U in the base B, as well as x, y and
< x, Uy >. The continuity of f is implicitly assured since Rn has the finite

dimension nN* (see also problem 1). }

An important type of functions (also called forms in Rn) derives from the

n-linear functions by identifying the variables. This technique will be later
used to connect the higher order differentials with the terms of a Taylor’s
development (see the next chapter).
4.22. Definition. Let X be a real linear space. If f : X x XR is a bilinear

function, then the function : X R, expressed by  (x) = f (x, x) at any

xX , is called quadric function. Similarly, if g is a three-linear function,

then the function of values  (x) = g (x, x, x) is called cubic, etc.
A bilinear function f is said to be symmetric iff f (x, y) = f (y, x) holds at

arbitrary x, y X .

If X = Rn, then f , g, etc. (respectively  , , etc.) are called forms.

4.23. Remark. Sometimes, we prefer to define the quadratic functions by
starting with symmetric bilinear functions. The advantage of this variant is
that the forthcoming correspondence of f to  is 1:1 (otherwise f  g may
yield the same quadratic function , e.g. x1y2 and x2y1 in R2). Going back,

from the quadratic form  to the generating bilinear symmetric function f
(frequently called the polar of ), is done by the formula

f (x, y) = [(x + y) –  (x) –  (y)] / 2.
The quadratic forms, i.e. the functions : RnR, are always continuous.

Their simplest description is that of homogeneous polynomial functions of
the second degree, which has strong connections with the geometric theory
of the conics and quadrics.
4.24. Example. The function : R2R, expressed at each x = (x1, x2) by

 (x) = x1
2 + 4x1 x2 – 3x2

2 ,
is generated by the (unique) symmetric bilinear form

f (x, y) = x1 y1 + 2(x1 y2 + x2 y1) – 3x2 y2 ,
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which represents the polar form of . From the geometrical point of view,
 (x) = k is the equation of a centered quadratic curve (conic) of matrix

A = 








32

21

-
.

In addition, doing a convenient rotation, i.e. replacing















cossin

sincos

/
2

/
12

/
2

/
11

xxx

xxx

we find another system of coordinates, in which the equation of this conic
becomes canonical, namely λ1 x /

1
2 + λ2 x /

2
2 = k /. The corresponding

canonical form of  in the new base has the simpler diagonal matrix

B = 








2

1

0

0




.

The question is whether such a reduction to a form that contains only
squares (represented by a diagonal matrix) is always possible and if “yes”,
then how is it concretely realizable? In order for us to get the answer,
which will be positive, we need several results about the complex spaces
(as mentioned in the above remark 4.19).
4.25. Definition. Let X be a (real or complex) linear space. We say that a

function f : X x X Γ is Hermitian iff it fulfils the conditions:

[H1] f (x + y, z) =  f (x, z) + f (y, z) at all x, y, z  X , and ,  Γ
(called linearity relative to the first variable);

[H2] f (x, y) = ),( xyf at all x, y X (called skew symmetry).

4.26. Remarks. a) If Γ = R, then the condition [H2] reduces to the usual

symmetry, hence the real Hermitian functions are symmetric (speaking of
symmetric complex functions is also possible, but not very fruitful).
b) A property similar to proposition 4.20 holds, i.e. every Hermitian
continuous function f on Hilbert space (X , < . , . >) has the form

f (x, y) = < x, Uy >,
where U : X  X is a continuous linear operator.
c) By analogy to Corollary 4.21, the Hermitian functions on Γn (where they
all are continuous) are represented by matrices. More exactly, if the matrix

AMn(Γ) represents the operator U in a particular base B of X = Γn,

and the matrices X, Y Mn 1 (Γ) represent the vectors x, y X, then

f (x, y) = X T A Y = 


n

ji
jiij yxa

1,

,

where ai j = f (ei , ej), with ei , ejB, for all i, j = n,1 .
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d) Each matrix A, which represents a Hermitian function f as before, is said

to be Hermitian. Its specific property, i.e. A = A T, is a reformulation of the

relations ai j = jia , for all i, j = n,1 .

Operators, which are represented by Hermitian matrices, allow a general
theory based on the notion of adjoint operator, as follows:
4.27. Theorem. Let (X , < . , . >) be a Hilbert space over the field Γ. If U is

a continuous linear operator on X , then there exists another (unique) linear

and continuous operator U* on X , such that < Ux, y > = < x, U* y > holds

at all x, y  X .

Proof. Obviously, if U : X  X is a continuous linear operator, then the

functional f : X x X Γ, defined by the formula f (x, y) = < Ux, y >, is

continuous and Hermitian. If we fix yX , then the function f ( . , y) is
continuous and linear. Consequently, in accordance to the Riesz’ theorem,
to each vector y there corresponds a (unique) vector y*X , such that

f (x, y) = < x, y* >
holds at all xX . It remains to note y* = Uy, and to repeat the reason in

the proof of proposition 4.20. }

4.28. Definition. The operator U*, introduced by theorem 4.27 from above,
is called adjoint of U. If U* = U, i.e. the equality < Ux, y > = < x, Uy >
holds at all x, yX , then U is called self-adjoint operator.

The self-adjoint operators have remarkable spectral properties:
4.29. Proposition. Let (X , < . , . >) be a Hilbert space. If U : X  X is a
self-adjoint operator, then:
a) All its proper values are real (but not necessarily simple);
b) The proper vectors, which correspond to different proper values, are

orthogonal each other;
c) If X = Γn, then there exists a base consisting of proper vectors;

d) A matrix AMn(Γ) represents U iff it is Hermitian, i.e. A = A T .

Proof. a) Replacing Ux = λx in the very definition < Ux, y > = < x, Uy >, we

obtain   , i.e.  R.

b) If Ux = λx, and Uy = μy, where λ, μR, λ μ, then the fact that U is

self-adjoint leads to (λ – μ) < x, y > = 0. Consequently, we have x y.

c) If x1 is a proper vector of U, then 
1x is an invariant subspace of U, and

the restriction U1 of U to this subspace is a self-adjoint operator too. Let x2

be a proper vector of U1, and let U2 be the restriction of U to {x1, x2}
 .

Here we find another proper vector, say x3 , etc. Because the dimension of
X = Γn is finite, namely n, this process stops at the proper vector xn .
d) If A represents U, the relation < Ux, y > = < x, Uy > becomes
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X T A T Y = X T A Y .

This means that the equalities ai j = jia hold for all i, j = n,1 . }

Now we can discuss the fundamental theorem concerning the canonical
form of a quadratic function on Rn .

4.30. Theorem. For each quadratic from there exists an orthogonal base of
Rn, in which it reduces to a sum of + squares.

Proof. Let the quadratic form  be generated by the symmetric bilinear
form f . The operator U, for which we have f (x, y) = < x, Uy >, obviously is
self-adjoint. According to the above property 4.29. c), it has an orthogonal
system of proper vectors. Because ai j = f (ei , ej) = < ei , Uej >, it follows
that ai j = 0 whenever ji  . Consequently, the system of proper vectors

forms the sought base. }

4.31. Remark. The matrix A, which represents a quadratic form  in its
canonical form, has a diagonal shape. If this matrix contains some zeros in
the diagonal (hence det A = 0), we say that the form  is degenerate. The
other elements of the diagonal are either +1 or –1 (in the complex case the
sign doesn’t matter). Relative to the number p of positive, q of negative,
and r of null coefficients of the squares in different canonical forms, the
following theorem is very important:
4.32. Theorem. (Sylvester’s inertia law) The numbers p, q, and r, of
positive, negative, respectively null coefficients, are the same for all the
canonical forms of a given (real) quadratic form.

The proof is purely algebraic, and therefore it is omitted here (see some
algebra treatises). According to this “law of inertia”, the triplet (p, q, r)
represents an intrinsic property of each quadratic form, in the sense that it
is the same in all the bases mentioned in theorem 4.30. This triplet is
frequently called signature. Its usefulness is primarily seen in the process
of classifying the quadratic forms, which, obviously, should be based on
some intrinsic properties of these forms.
4.33. Classification. Let :XR be a quadratic function on the real linear

space X . We distinguish the following situations:

- There exist x, y  X such that  (x) > 0 and  (y) < 0, when we say that

 is indefinite; in the contrary case we say that  is semi-definite.
- The semi-definite quadratic function vanishes only at the origin, i.e.

x 0)(0  x . In this case we say that  is definite.

- The semi-definite (possibly definite) quadratic function  takes only
positive values, i.e.  (x)0 holds at all xX , when we say that  is

positive. In the remaining case, when  (x)0 holds at all xX , we say

that  is negative.
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We may easily reformulate this classification in terms of signature:
4.34. Proposition. If :RnR is a quadratic form of signature (p, q, r),

then the following characterizations are valid:
a)  is indefinite iff p 0  q;
b)  is positively (negatively) semi-definite iff q=0 (p=0);
c)  is positively (negatively) definite iff q=r=0 (p=r=0).
4.35. Remark. Establishing the type of a quadratic form is useful in the
study of the local extrema. Therefore according to the above proposition,
our interest is to know more methods for finding the signature. The first
one is directly based on the canonical form, which can be obtained by
following the proof of the proposition 4.29.c. More exactly:
4.36. Theorem. A (real) quadratic form is positively (negatively) definite
iff the proper values of the associated matrix are all positive (respectively
negative). If this matrix has both positive and negative proper values, then
the quadratic form is indefinite.

Now we mention without proof another test of definiteness, which is very
useful in practice because its hypothesis asks to evaluate determinants:
4.37. Theorem. (Sylvester) Let  be a quadratic form, and let

Δ1 = a11, Δ2 = a11 a22 – a12
2, …, Δn = det A

be the principal minors of the associated matrix A. We have:
a) Δ1 > 0, Δ2 > 0, …, Δn > 0 iff  is positively definite;
b) Δ1 < 0, Δ2 > 0, Δ3 < 0, …,(-1)n Δn > 0 iff  is negatively definite.

We conclude this section with a significant property of the definite forms,
which will be used to obtain sufficient conditions for the existence of a
local extremum.
4.38. Theorem. If :Rn R is a positively definite quadratic form, then

there exists k > 0 such that the inequality
 (x)  k ||x||2

holds at all xRn.

Proof. Let S = {xRn : ||x|| = 1} be the unit sphere in Rn. Because S is

bounded and closed, hence compact, and the function  is continuous, there
exists k = inf { (x) : xS} =  (x0) 0, where x0S. More precisely, we
have x0  0, so that k > 0. Now, at each xRn \ {0}, we evaluate:

kx
x

x
x

x
x

f
x

xxf

x

x
 )

1
()

1
,

1
(

),()(
22




,

where f is the symmetric bilinear form that generates . This leads to the
claimed relation at all x 0. It remains to remark that it is obviously
verified at the origin. }
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PROBLEMS §III.4.

1. Show that every linear operator, which acts between spaces of finite
dimension, is continuous. In particular, consider the derivation on the space
of all polynomial functions defined on [a, b]  R, which have the degree

smaller than or equal to a fixed nN.

Hint. Each linear operator is represented by a matrix A = (ai k), i.e.

yi = 


n

k 1

ai k xk = < ai , x >

holds for all i = m,1 . Using the fundamental inequality in Γn , we deduce

that | yi|  ||ai|| ||x||, hence ||y|| μ ||x||, where

μ = 
 

m

i

n

k
ika

1 1

2
.

For polynomial functions, if we refer to the base {1, t, t2, …, tn}, then we
may describe the derivation as a change of coefficients, namely

(c0, c1, …, cn)  (c1, 2c2, …, ncn).
In other terms, we represent the operator of derivation by the matrix

A =























0...000

...000

.........

0...200

0...010

n

.

2. Show that the operator of integration on a compact K = [a, b] R, with

a continuous nucleus A : K x K R, defined by the formula


b

a

dttxstAsy )(),()( ,

is continuous relative to the sup norm of the space CR(K).

Hint. We cannot represent this operator by a matrix, because it acts on a
space of infinite dimension. However, if we note

μ = (b – a) sup {| A(t, s)| : t, sK},
we may evaluate

| y(s)|  
b

a

|A(t, s)| |x(t)| dt  
b

a

|A(t, s)|dt μ ||x||.

The asked continuity follows from the inequality ||y||  μ ||x|| .
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3. Show that the operator of derivation, D : CR
1(I)  CR(I), where I R,

is not continuous relative to the sup norms of CR
1(I) and CR(I).

Hint. D is discontinuous on CR
1(I), since it is discontinuous at the origin. In

fact, let the functions xn : I R, of the sequence (xn), be defined by

xn(t) =
n

ntsin
.

This sequence tends to zero when n  , since ||xn||  n–1/2. However, the

sequence (xn
/ ), of derivatives, is divergent, since xn

/ (t) = n cos nt .

4. Using a geometric interpretation of the equation f = const. , evaluate the
norm of the function f : R3 R, of values f (x, y, z) = x + y + z .

Hint. Find αR such that the plane π, of equation f (x, y, z) = α , is tangent

to the sphere of equation x2 + y2 + z2 = 1. Because π (1, 1, 1), it follows
that the point of tangency belongs to the straight line {λ(1, 1, 1) : λR}.

5. On the space CR([–1, +1]), endowed with the sup norm, we define the

function f : CR([–1, +1]) R, of values f (x) = x(0). Show that f is linear

and continuous, and find its norm.
Hint. The linearity is immediate. If ||x|| = sup {| x(t)| : t[–1, +1]}1, then
obviously | f (x)| 1, hence || f ||1. Functions like x(t) = cos t, which have
the norm || x|| = | x(0)| = 1, show that the sup value is attained, i.e. || f || = 1.

6. Show that every full sphere, in a normed linear space (X , ||.||), is convex,
but no straight line is entirely contained in such a sphere. Identify the linear
operator U:XY, where (Y, ||.||) is another normed space, for which there

exists M > 0 such that ||U(x)|| < M holds at all xX .
Hint. We may take the center of the sphere at the origin. If x + λyS(0, r)
is allowed for arbitrary λ Γ, including λ  , then from the inequality

| λ | ||y|| = || λ y|| ||x|| + ||x + λy || ||x|| + r
it follows that y = 0. Because U carries a straight line into another straight
line, the single “bounded on X “ linear operator is the null one.

7. Let U be a self-adjoint operator on the Euclidean space X = Γn (of finite
dimension). Show that:
a) There exists x0  X such that || x0 || = 1 and ||U|| = ||U(x0)||;
b) This x0 is a proper vector of U 2 ;
c) The proper value of U 2, corresponding to x0 , is λ = ||U|| 2 ;
d) Either + ||U|| or – ||U|| is a proper value of U.
Hint. a) U is continuous, hence the supremum in the definition of ||U|| is
attained on the unit sphere, which is a compact set.
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b) If we note U(x0) = y0 , then we successively obtain
||U||2 = < U(x0), U(x0) > = < y0 , U(x0) > =

= < U(y0), x0 >  ||U(y0)|| ||x0|| = ||U(y0)||  ||U|| ||y0|| = ||U|| ||U(x0)|| = ||U||2 .
The resulting equality < U(y0), x0 > = ||U(y0)|| ||x0|| is possible in a single

case, namely when U(y0) = λ x0 .
c) From U2(x0) = λ x0 we deduce ||U||2 = < U(y0), x0 > = λ .
d) We may write the relation U2(x0) = ||U||2 x0 in the form

(U – ||U|| I)(U + ||U||I )(x0) = 0.
If z0 = (U + ||U|| I )(x0) 0, then (U – ||U|| I ) (z0) = 0, hence z0 is a proper
vector corresponding to the proper value ||U|| . If z0 = 0, then the expression
of z0 directly gives U(x0) = – ||U|| I x0 .

8. Find the symmetric bilinear forms that generate the following quadratic
forms, and bring them into a canonical form:
a)  = x2 + 2y2 + 3z2 – 4xy – 4yz ;
b)  = 2xy + 2xz – 2xt – 2yz + 2yt +2 zt ;

c)  = 2


n

ji

xi xj .

Hint. a) The matrix A, associated to  , has three distinct proper values,
namely λ1 = –1, λ2 = 2, and λ3 = 5, hence a canonical form of  is

– u2 + 2v2 + 5w2.
b) The matrix of the corresponding bilinear form is

A =



















0111-

101-1

11-01

1-110

.

It has a simple proper value λ1 = -3 and a triple one λ2 = 1. The new base
may consist of (1, –1, –1, 1), which is a proper vector corresponding to λ1,
and three orthogonal solutions of the equation AX = X, which furnishes the
proper vectors of λ2 = 1. Because this equation reduces to x – y – z + t = 0,
we may chose the vectors (1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1). The resulting
canonical form is u2 + v2 + w2 – 3s2 .
c) The attached symmetric matrix has two proper values, namely λ1 = n-1,
and λ2 = -1, of multiplicity (n-1). A solution of the equation Ax = (n-1)x is
(1, 1, …, 1), while equation Ax = - x reduces to x1 + … + xn = 0.

A canonical form is  =
2/

1x – 


n

i
ix

1

2/ .

9. Let X be the linear space of real polynomial functions with degree not

exceeding 2, defined on [0, 1]. Show that the function f : X x XR,
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f (x, y) = 
1

0

x(t)y(t) dt,

is a bilinear symmetric form on X , and find its matrix in the base {1, t, t2}.
Verify directly, and using a canonical form, that f generates a positively
definite quadratic form.
Hint. According to the formula ai j = f (ei, ej), we obtain

A =



















),(),()1,(

),(),()1,(

),1(),1()1,1(

2222

2

2

ttfttftf

ttfttftf

tftff

=
















5/14/13/1

1/41/31/2

1/31/21

.

To prove the positiveness of the generated quadratic form, we may use the
Sylvester’s test 4.37.

10. Discuss the signature of the following quadratic forms upon the
parameters a, b, c R:

1)  = ax2 + 2bxy + cy2 ;
2)  = 2x2 + 2xy + 2axz + y2 + 2yz + az2 ;
3) = x2 + 2xy + 2axz + y2 – 2yz + az2 .
Hint. 1) The cases when some parameters vanish are immediate. If a 0,
we may isolate a square, and write  in the form

a

1
[a2(x +

a

b
y)2 + (ac – b2) y2].

2) Use the Sylvester’s test;  is positive at a(1, 2).
3) In the attached matrix, the second minor vanishes; hence the Sylvester’s
test doesn’t work any more. The form  is degenerated at the value a = -1,
and indefinite at any aR.

11. Find the extreme values (if there are some) of the following polynomial
functions of the second degree:
f (x, y, z) = x2 + y2 + z2 – xy + 2z – 3x;
g(x, y, z) = x2 + y2 – 2z2 + 2x – 2y + 3.
Hint. Realize translations of the origin in R3, and make evident some

quadratic forms. In particular, replacing x = u – 1, y = v + 1, and z = w,
brings g into the form u2 + v2 – w2 + 1. Because the involved quadratic
form is indefinite, g(-1, 1, 0) isn’t extreme value, i.e. in any neighborhood
of, (-1, 1, 0) there are points where g takes both greater and smaller values
than 1 = g(-1, 1, 0).
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CHAPTER IV. DIFFERENTIABILITY

§ IV.1. REAL FUNCTIONS OF A REAL VARIABLE

1.1. Linear approximations. In order to define the notion of differential
we will analyze the process of approximating a real function of a real
variable by a linear function. Let us consider that the function f : (a, b)R

is derivable at the point x0 (a, b)R (see fig. IV.1.1), i.e. then exists the

tangent to the graph of f at M0 .

T

M

0M

y

a b
x

x( )h
0

x h+0
x0

f x( )0

h

0

( )f x h/

0
.

Fig.IV.1.1.

f x h( + )0

Taking into account the signs of the increments, we obtain the equality
f (x0 + h) – f (x0) = f /(x0)  h + )(

0
hx ,

which indicates a possibility of approximating f (x0 + h) by f (x0) + f / (x0) h.
The error of this approximation is )(

0
hx . In addition, we may consider

that this method provides a “good approximation”, in the sense that the
existence of f /(x0) leads to

0lim)(
)()(

lim 0

0
0

/00

0




 h
xf

h

xfhxf x

hh


,

which means that )(
0

hx tends to zero faster than h does. Geometrically,

using the graph of f , this property of the error shows that the secant M0 M
tends to the tangent M0T whenever h0. Such an approximation is said to
be linear because the function

0xL : RR, defined by
0xL (h) = f / (x0)  h,

is linear (note that f / (x0) is a fixed number here, and h is the argument).
As a conclusion, the above linear approximation is possible because there

exists the linear functional
0xL such that

0
)()()(

lim 000

0




 h

hLxfhxf x

h
. (*)
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The linear functions like
0xL will be the object of the present chapter. As

usually, L (X, Y ) will denote the set of all linear functions L: X  Y .

1.2. Definition. Let AR be an open set, f : AR be an arbitrary function,

and x0A be a fixed point. We say that f is differentiable at x0 iff there
exists

0xL  L (R, R) such that (*) holds. The linear (and also continuous)

function
0xL is called differential of f at x0 , and by tradition it is noted

0xdf .

1.3. Theorem. A real function of one real variable, say f : AR, AR, is

differentiable at x0A iff it is derivable at this point. In addition, the values
of the differential are

0xdf (h) = f /(x0) h

at each hR,

Proof. If f is differentiable at x0 , then condition (*) holds. Now, let us
remark that the linear functions on R have the form

0xL (h) = hc  , for

some cR. In fact, because linearity means additivity and homogeneity, if

we put k=1 in
0xL (kh) = h

0xL (k), we obtain
0xL (h) = h

0xL (1), where h is

arbitrary in R. Consequently, we have
0xL (h) = hc  , with c =

0xL (1). If

we replace this expression in (*), we obtain




 h

xfhxf

h

)()(
lim 00

0
c ,

which shows that f is derivable at x0 , and f /(x0) = c. In addition,

0xL (h)
.not


0xdf (h) = hc  = f /(x0) h.

Conversely, the existence of the derivative f /(x0) may be written as

0
)(')()(

lim 000

0




 h

hxfxfhxf

h
,

where f /(x0) h =
0xL (h) is the searched linear function. }

1.4. Remark. The concrete calculation of the differential
0xdf of a function

f : AR, where AR, at a point x0 A, simply reduces to the calculation

of f /(x0). Both f /(x0) and
0xdf involve a limiting process, locally at x0 .

The first part of the above proof shows that the linear spaces L (R, R)

and R are isomorphic. However, the main point of theorem 1.3 is the strong

connection between differential and derivative, which explains why some
authors identify the terms “differentiation” and “derivation”. To be more
specific, we will use the word “differentiation” in the sense of “calculating
a differential”.
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If we calculate the differential
0xdf at each x0 A, we obtain a function on

A, with values in L (R, R), which is a differential on a set. More exactly:

1.5. Definition. A function f : AR, where AR, is differentiable on the

set A iff it is differentiable at each point xA. The differential of f on A ,
noted df : A L (R, R), is defined by the formula

df (x) = dfx .
1.6. Remarks. According to theorem 1.3, we have

df (x)(h) = dfx (h) = f /(x)∙h .
If we apply this formula to the identity of A, noted  : AA, and defined by
(x) = x, then we obtain the derivative  / (x) = 1, and the differential

d x (h) = h .
Consequently, for an arbitrary function f , we have

df (x)(h) = f /(x) d x (h) = f /(x) d (x) (h) ,
or, renouncing to mention the variable h, which is arbitrary in R,

df (x) = f /(x) d (x).
Since x is arbitrary in A, we may omit it, and write the relation between the
functions, that is df = f /(x) d. Because of the tradition to note d= dx, we
finally obtain a symbolic form of the differential, namely

df = f / dx. (**)
This is the simplest, but formalistic way to correlate the differential and

the derivative. It is very useful in formulating the general properties of the
differential, but its exact meaning has the chief importance in practice (see
the exercises at the end of the section).
1.7. Theorem. Let AR be an open set. The differential has the following

properties:
a) Every differentiable function on A is continuous on A.
b) If the function f : AB  R is differentiable on A, and g : BR is

differentiable on B, then g f : AR is differentiable on A, and

d( g f ) = ( g /
 f ) df.

c) If the functions f, g : AR are differentiable on A, then f + g, λf , fg, and

f /g (where defined) are differentiable on A, and:
d(f + g) = df + dg

d(λf ) = λdf
d(fg) = f dg + g df

d(f /g) =
2g

fdggdf 
.

Proof. a) According to theorem 1.3, the properties of differentiability and
derivability are equivalent, but derivable functions are continuous.
b) By a direct calculation of d(g f )x (h), we are lead to the formula

d(g f ) = (g f ) / dx = (g /
 f ) f / dx = (g /

 f ) df .



Chapter IV. Differentiability

186

c) The problem reduces to the derivation of a quotient. Following the
definition of d(f /g)x (h), and erasing the variables h and x, we obtain:

22

//

2

///
)()(

g

dgfdfg

g

dxgfdxfg
dx

g

fggf
dx

g

f

g

f
d


























.

Alternatively, (**) allows formal proofs of b) and c). }

1.8. Remark. To solve practical problems, especially approximations, we
may use the notion of differential in a simpler sense. For example (see
[DB], etc.), the differential of a function y = f (x) is the principal part of its
increment y = f (x + x) – f (x), which is linear relative to the increment
x = h. Formally, the differential of f is defined by dy = f / dx , which is

considered equivalent to the derivative f / =
dx

dy
.

The problem of approximation reduces to the replacement of y by dy.
For example, for y = 3x2 – x, x=1, and  x = 0.01, we obtain y = 0.0503
and dy = 0.0500 .

Finally, we mention that in the process of evaluating the error of such a
linear approximation, we need some formulas for the remainder of the
Taylor series.

1.9. Example. Let us consider that we have to evaluate 3 1.8 . Of course,

we know that 283  , and for 3 1.8 we can specify a finite number of exact
digits only. The number of exact digits is determined by practical reasons,
say four in this case. According to the formula of linear approximation

hxfxfhxf  )()()( /

in the case 3)( xxf  , x = 8, and h = 0.1, we obtain 0083.21.83  .

0

1

2

8 8.1 x

-

-

y

Fig. IV.1.2.



We remark that 3 1.0 is not available on this way using f /(0)!
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PROBLEMS §IV.1.

1. Using the linear approximation, calculate 3 5.8 , arcsin 0.51, and the area
of a circle of radius r = 3.02 cm .

Hint. 8.5 = 23 + 0.5, hence for f (x) = 3 x we take x0 = 2 and h = 0.5 .

Similarly, for f (x) = arcsin x, we consider x0 =
2

1
and h = 0.01 . The area

of the circle approximately equals
A  π ·32 + 2 π ·3·0.02 = 9 π + 0.12 π  28.66 .

2. Using the linear approximation, find the solution of the equation
15 cos x – 13 sin x = 0

in the interval (0, π/2).

Hint. x = arctg (1 +
13

2
) may be approximated taking x0 = 1 and h =

13

2
.

3. Find the differentials of the following functions on the indicated sets of
definition (intervals):
a) f : RR, f linear; show that dfx = f ;

b) f : ( – 1, + ∞) R, f (x) = ln(1 + x);

c) f : RR, f (x) =










.0xif

0xifsin

2

2

x

x

4.Study the differentiability of the function f : RR, of values

f (x) =










 .0xif

0xif

2 xex

x

Hint. f is not derivable at the origin.
5.Using the Ohm’s Law I = E/R, show that a small change in the current,
due to a small change in the resistance, may be approximately calculated by
the formula

I = –
R

I
 R.

6. Let us imagine a thin thread along the equator of the earth, and the length
of this thread increases by 1m. If this thread is arranged in a concentric to
the equator circle, can a cat pass through the resulting space?

Hint. From the formula L = 2πr we deduce that dr =
2

1
dL. The increment

dL = 100 cm of the circumference corresponds to an increment dr > 15 cm
of the radius, so the answer is “Yes”.
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§ IV.2. FUNCTIONS BETWEEN NORMED SPACES

As we already have seen in the previous section, the differential of a
function f : AR, where AR, is a function df : AL (R, R), hence it

ranges in a linear normed space. The higher order differentials should be
defined on normed linear spaces. Similarly, the vector functions of one or
more variables, as well as their differentials, act between normed spaces.
This is the reason why we have to extend the differential of a real function
of one real variable to that of a function between normed spaces.
2.1. Definition. Let us consider two normed spaces (X ,

1
 ), (Y ,

2
 ),

an open set AX , x0 A, and a function f : AY . As usually, we note by

B (X , Y ) the set of all linear and continuous functions from X to Y .
We say that f is differentiable (in the Fréchet’s sense) at the point x0 iff
there exists 

0xL B (X , Y ) such that

0
)()()(

lim
1

200

0

0

1




 h

hLxfhxf x

h
.

The linear and continuous function
0xL is called differential of f at x0 (in the

Fréchet’s sense). By tradition,
0xL is frequently noted

0xdf .

2.2. Remark. If we note U = {hX : x0 + hA} and
0x :UY , where

0x (h) = f (x0 + h) – f (x0) –
0xL (h),

then the condition of differentiability reduces to

0
)(

lim
1

2

0

0

1


 h

hx

h


.

As for real functions, we may consider that
0xL is a linear approximation

of f (x0 + h) – f (x0) in a neighborhood of x0. Establishing the differentiability
of a function is possible only if we have a good knowledge of B (X , Y ).
More than this, even if the differentiability is assured, there remains the
concrete problem of writing the differential

0xdf .

The following theorem is useful in this respect:
2.3. Theorem. If f : AY , AX , is differentiable at x0 A, then:

a) The value of
0xdf at any hX is

0xdf (h) =
t

xfthxf

t

)()(
lim 00

0




,

where tR (this limit is usually called weak, or Gateaux’ differential);

b)
0xdf is uniquely determined by f and x0 .
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Proof. a) The case h = 0 is obvious. For 0h , we may remark that

1

200

1
2

00
)()()(

)(
)()( 0

0 th

thdfxfthxf
hhdf

t

xfthxf x

x






and 0t implies 0
1
th for each fixed hX . Consequently, because f

is supposed differentiable, the claimed formula of
0xdf follows from

0)(
)()(

lim
2

00

0 0





hdf

t

xfthxf
x

t
.

b) Accordingly to a),
0xdf (h) is obtained as a limit, but in normed spaces

the limit is unique. Since h is arbitrary,
0xdf is unique too. }

2.4. Remark. The hypothesis that function f is differentiable is essential in
the above theorem, i.e. it assures the existence of the Gateaux’ differential

t

xfthxf

t

)()(
lim 00

0



 0

.

x

not
 (h) .

Conversely, the existence of
0x at arbitrary hX does not mean that f is

differentiable at x0 . More exactly, it may happen that either
0x (h) is not

linear, or the quotient
1

2
)(

0

h

hx
has no limit (even if

0x is linear). Simple

examples of these possibilities are the functions f : R2
R, defined by

f (x, y) =













,00

(0,0)),(
22

yxif

yxif
yx

yx

respectively g: R2
R, defined by

g(x,y) =













.(0,0)),(0

)0,0(),(
26

3

yxif

yxif
yx

yx

The differentiability at a point is naturally extended to a set:
2.5. Definition. In the conditions of Definition 2.1, we say that function f is
differentiable on the set A iff it is differentiable at each point x0 A. In this
case, the function df : AB (X , Y ), defined by df (x) = dfx , is called the
differential of f on A . If df is continuous, then we say that f is of class C1

on A, and we note f  C1
Y (A).

The general properties of the differential of a real function depending on
a single real variable, expressed in theorem 1.7 of the previous section,
remain valid for functions between normed linear spaces:
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2.6. Theorem. a) Each differentiable function is continuous;
b) If f : AB, where AX and BY are open sets, is differentiable at the

point x0  A, and g: BZ is differentiable at f (x0 ), where (Z , || . ||3) is

another normed space, then g f : AZ is differentiable at x0 , and

000 )()( xxfx dfdgfgd   ;

c) If f , g : AY are differentiable functions on A and λ R, then f + g

and λf are also differentiable on A, and d( f + g) = df + dg , d(λf ) = λdf .
Proof. a) Differently from theorem IV.1.7, the proof shall be directly based
on the definitions. Let f : AY be a differentiable function at an arbitrary
point x0 A. According to the corollary III.4.6, the continuity of the

differential shows that for every h X we have
12 00

)( hdfhdf xx  . In

the terms of the remark 2.2, the condition of differentiability takes the form

0
)(

lim
1

2

0

0

1


 h

hx

h


.

In particular, for  = 1, there exists 1 > 0, such that 1
)(

1

20


h

hx
, that is

12
)(

0
hhx  , holds at each h U for which 

1
h 1 . Consequently, at

all such h, the following relations hold:

200 )()( xfhxf  =
2

)()(
00

hhdf xx 
22

)()(
00

hhdf xx  <

<
110

hhdfx  =  
1

1
0

hdf x  .

Now, for arbitrary  > 0, we consider   1/,min
01  xdf > 0. It is

easy to see that for all h U, for which 
1

h  , we have

200 )()( xfhxf  <  
1

1
0

hdf x  < 

which proves the continuity of f at x0 . Since x0 was arbitrary in A, we
conclude that f is continuous on A .

b) Besides U, involved in the differentiability of f , let us consider
V = {s Y : f (x0 ) + s B}.

Since A and B are open, we have U  , V  . The differentiability of f

at x0 means that there exist
0xdf B (X , Y ) and Uf

x
:

0
 Y , such that

f (x0 + h) – f (x0 ) =
0xdf (h) + )(

0
hf

x
 holds at each h U, and

0
)(

lim
1

2

0

0

1


 h

hf
x

h


.



§ IV.2. Functions between normed spaces

191

Similarly, the differentiability of g at f (x0 ) assumes the existence of the

functions )( 0xfdg B (Y , Z ) and Vg
xf

:
)( 0

 Z , such that

)()())(())((
)()(00

00
ssdgxfgsxfg g

xfxf 

holds at all s V, and 0
)(

lim
2

3)(

0

0

2


 s

sg
xf

s


.

Since s = f (x0 + h) – f (x0 )V whenever h U, we obtain:

)())()(())(())((
)(00)(00

00
sxfhxfdgxfghxfg g

xfxf  .

In terms of composed functions, this relation shows that

  )()()())(())((
)()(00

0000
shhdfdgxfghxfg g

xf
f
xxxf    .

Because )( 0xfdg is a linear function, it follows that

 ))(())(( 00 xfghxfg 

=     )()()(
)()()(

00000
shdghdfdg g

xf
f
xxfxxf   =

=      )()()()( 00)()()(
00000

xfhxfhdghdfdg g
xf

f
xxfxxf   .

The membership )( 0)( 0
xdfdg xf  B (X , Z ) immediately follows from

the previous hypotheses
0xdf B (X , Y ) and )( 0xfdg B (Y , Z ), so it

remains to define
0x for the final proof of the differentiability of gf  . In

this respect we define the function
0x : U  Z , which takes the values

)(
0

hx =    )()()( 00)()(
000

xfhxfhdg g
xf

f
xxf  ,

and we show that it satisfies the condition

.0
)(

lim
1

3

0

0

1


 h

hx

h



In fact, if  > 0 is arbitrarily given, let us consider

0
1

'
)( 00





xfx dgdf


 .

According to Corollary III.4.6, the continuity of )( 0xfdg implies that

2
)(

3
)( )())((

0000
hdghdg f

xxf
f
xxf  

holds at each h  U. Relative to the differentiability of f, we recall that

0
)(

lim
1

2

0

0

1


 h

hf
x

h


,
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i.e. for arbitrary ' > 0, there exists 1 > 0, such that the inequality

12
')(

0
hhf

x
 

holds at each h  U, for which 11
h . As a partial result, we retain that,

under the mentioned conditions, we have the inequality

1)(
3

)( 000
'))(( hdghdg xf

f
xxf   . (*)

Similarly, the differentiability of g assures the relation

0
)(

lim
2

3)(

0

0

2


 s

sg
xf

s


.

In more details, this means that for arbitrary ' > 0, there exists > 0,

such that the inequality
23)(

')(
0

ssg
xf

  is valid at each s  V, for

which 
2

s . Because f is continuous at x0 , as already proved at part a),

to this  there corresponds some 2 > 0, such that h  U, and 21
h are

sufficient conditions for 
200 )()( xfhxf . Consequently, if h  U,

and 21
h , then we may replace s in the above inequality, and we obtain

 
200

3
00)(

)()(')()(
0

xfhxfxfhxfg
xf

  .

On the other hand, when proving part a) of the present theorem, we have
established that there exists 03  , such that h  U, and 31

h imply

200 )()( xfhxf  <  
1

1
0

hdf x  .

Consequently, if h  U, such that },min{ 321
h , then

   
13

00)( 00
1')()( hdfxfhxf x

g
xf

  . (**)

Finally, let us define },,min{ 321   . Because (*) and (**) are valid

at all h  U, for which 
1

h , it follows that at these points we have

 
1)(3 000

1')( hdgdfh xfxx   .

This inequality shows that the inequality 



1

3
)(

0

h

hx
holds at all h  U,

for which 0 < 
1

h . In other words, this means 0
)(

lim
1

3

0

0

1


 h

hx

h


,

which shows that fg  is differentiable at x0 , and its differential is
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000 )()( xxfx dfdgfgd   .

To accomplish the proof, we recall the uniqueness of a differential.
c) Let f , g : AY be differentiable functions at 0x A, and let λ R be

arbitrary. Because 
00

, xx dgdf B ( X , Y ), and B ( X , Y ) is a linear

space, it follows that 
000

, xxx dfdgdf  B ( X , Y ) too. It is easy to

see that at each non null h  U, we have




1

200 ))(())(())((
00

h

hdgdfxgfhxgf xx

1

200

1

200 )()()()()()(
00

h

hdgxghxg

h

hdfxfhxf xx 



 .

This inequality shows that f + g is differentiable at x0 , and its differential
has the (unique) value

000
)( xxx dgdfgfd  . Since x0 is arbitrary in A,

we obtain the claimed relation, d( f + g) = df + dg .
By analogy, at each h \U {0 X }, we may write the relation




1

200 ))(())(())((
0

h

hdfxfhxf x

1

200 )()()(
0

h

hdfxfhxf x
  .

Consequently, the differentiability of f at x0 implies the differentiability of
)( f at this point. In addition,

00
)( xx dffd   is the (unique) value of

this differential at x0 . Taking into account that x0 was arbitrary in A, we see
that f is differentiable on A, and dffd   )( . }

Now we can define the higher order differentials as follows:
2.7. Definition. Let f be a function in the conditions of the definition 2.1.
We say that f is two times differentiable at x0 iff:
a) f is differentiable on an open neighborhood V of x0 ;
b) The function df : VB (X , Y ) is differentiable at x0 .

In this case, the differential of df at x0 is called second order differential

of f at x0 , and it is noted
0

2
xfd . Briefly,

0

2
xfd = 

0
)( xdfd B ( X , B ( X , Y )).

If f is two times differentiable at each xA, we say that f is two times
differentiable on A. The function d2f : A B ( X , B ( X , Y )), defined by

(d2f )(x) = d2fx = d(df )x

is called second order differential of f on A .
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2.8. Remark. In the terms of § III.4, and particularly according to theorem
III.4.18, the space B ( X , B ( X , Y )) is isometrically isomorphic with

the space B 2( X , X ; Y ) of all bilinear functions on X x X , which range

in Y . Consequently, we may consider that
0

2
xfd  B 2( X , X ; Y ).

2.9. Proposition. d2x = 0 , where x denotes the independent (real) variable.
Proof. By definition 2.7, d2x = d(dx). As already discussed in the previous
section, dx stands for d , where  : RR is the identity of R (defined by

(x) = x at all xR). Because  / (x) = 1, the differential of the identity takes

the values dx(h) = h at each xR. Consequently, d =  , i.e. d is constant.

The claimed relation d(dx) = 0 holds because the differential of a constant
function always vanishes. }

2.10. Proposition. If f  B (X , Y ), i.e. f is linear and continuous, then:

a) f is differentiable on X ,

b)
0xdf = f at each x0 X , and

c) d2f = 0.
Proof. For a) and b) we check 0)()()(

200  hfxfhxf .

To prove c) we interpret b) as showing that df is constant. }

In the last part of this section we will deduce properties of the differential
in the case when X and / or Y reduce to Rn , for some 1n .

2.11. Proposition. Let function f : AR be defined on the open set AR.

If the function f is two times derivable, then it is two times differentiable,

and
0

2
xfd (h, k) = f // (x0) h·k holds at each x0 A.

Conversely, if f is two times differentiable, then it is two times derivable,

and we have f // (x0 ) = )1,1(
0

2
xfd at each x0 A.

Proof. Let f be two times derivable. Because the map (h, k) f // (x0) h·k is
bilinear, the function

0xL (h) : RR, of values
0xL (h)(k) = f // (x0) h·k, is

linear. In the very definition of the second order differential we have

)())(())((
1

000 hLxdfhxdf
h

x =

= 













khxfkxdfkhxdf
kh k
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1

sup
1

0
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=
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)()()(
1

sup
1
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0
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0
/

0

=

= hxfxfhxf
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 )()()(
1

0
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0
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0
/ .
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Because f / is derivable at x0 , this expression has the limit zero when h

tends to zero, hence df is differentiable at x0 , and
0

2
xfd (h, k) = f // (x0) h·k .

Conversely, if f is two times differentiable, then df is supposed to exist in
a neighborhood of x0 . According to theorem IV.1.3, f / (x) exists at all x in
this neighborhood, and dfx (k) = f / (x) k . But f is two tomes differentiable,

hence there exists
0

2
xfd , such that khfdkhfd xx  )1,1(),(

00

22 , and















 

 k

khfdkxfkhxf

h

x

kh

)1,1()()(
sup

1
lim

0

2
0

/
0

/

00
= 0 .

In other terms, there exists the limit

0

2
xfd (1, 1) )(

)()(
lim 0

//
.

0
/

0
/

0
xf

h

xfhxf not

h






.

Consequently, f // (x0) =
0

2
xfd (1, 1). }

2.12. Proposition. Let A be an open subset of R, and let f : ARm , m > 0,

be a vector function of components f i : AR, i = 1, 2, …, m. Function f is

differentiable at a point Ax 0 iff all of its components are differentiable,

and, in this case, its differential has the form

),...,,(
0000

21 m
xxxx dfdfdfdf 

Proof. The differentiability of f involves a limiting process, which reduces
to limits on each component. On the other hand, the general form of a
linear function L L (R, Rm) = B (R, Rm) is

L(h) = (c1h, c2h, …, cmh) .
In particular, the differential of f at x0 has the same form,

0xdf (h) = (c1h, c2h, …, cmh),

where ci = f i /(x0) for all i = 1, 2, …, m. }

2.13. Remark. We may use the above proposition with the aim of writing
the differential of a vector function as the differential of a real function of
one real variable (if necessary, see the previous section). To obtain that
form, we first introduce the derivative of the vector function f at x0 by

 )(...,),(),()( 0
/

0
/2

0
/1

0
/ xfxfxfxf m .

Using this notion, the expression of the differential of f at x0 , established in
proposition 2.12, becomes

0xdf (h) = f /(x0) · h .

The only difference between the two cases is that "" stands here for the

product of a vector, namely f /(x0), by a scalar hR .
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For studying the differential of a function of more than one variables, we
need the following specific notions:
2.14. Definition. Let us consider f : AR, where ARp is open, and p > 1.

We say that f is partially derivable at the point x0 = (x1
0, …, xp

0) A,
relative to the i’th variable, iff there exists the finite limit (in R),

)(
)(),...,,,,...,(

lim 0

.
0

00
1

00
1

0
1

0
x

x

f

h

xfxxhxxxf

i

not

i

piiii

hi 




 


.

If so, this limit is called partial derivative of f relative to xi . In other words,
to obtain the i’th partial derivative, we fix the variables different from xi ,
and we derive as usually relative to this variable.

If f is partially derivable relative to all of its variables, at the point x0, then

the vector





















)(...,),( 00

1

x
x

f
x

x

f

p

is said to be the gradient of f at x0 , and

we note it (grad f )(x0 ), or simply grad f (x0 ).
2.15. Proposition. Let us consider a function f : AR, where ARp is

open, and p > 1. If f is differentiable at x0 = (x1
0, …, xp

0) A, then it has all
the partial derivatives at x0, and its differential has the form

0xdf (h) = < grad f (x0), h > ,

where h = (h1, …, hp)  Rp , and < . , . > denotes the scalar product of the

Euclidean space Rp. In other terms, we represent the differential
0xdf (h) by

the gradient of f at x0 , according to the formula

0xdf (h) = p
p

hx
x

f
hx

x

f










)(...)( 010

1

.

Proof. By hypothesis, there exists
0xL  L (Rp, R) = B (Rp, R), such that

.0
)()()(

lim 000

0




 h

hLxfhxf x

h

A linear function from Rp to R is specified by c1, …, cp R, in the formula

0xL (h) = c1 h1 + … + cp hp .

In our concrete case, we have to express the constants c1, …, cp by f . With
this purpose, for each i{1, …, p} , we consider increments of the form

h = (0, …, 0, hi , 0, …, 0),
such that

0xL (h) = ci hi . The differentiability of f leads to

0
)(),...,,...,(

lim
0

000
1

0




















i

i
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h
c

h

xfxhxxf

i

,



§ IV.2. Functions between normed spaces

197

which shows that ci = )( 0x
x

f

i


for each i = 1, 2, …, p. In conclusion, the

differential takes the form

0xdf (h) = p
p

hx
x

f
hx

x

f










)(...)( 010

1

= < grad f (x0), h > ,

which gives a representation of
0xdf by grad f (x0). }

2.16. Remarks. 1) The simple existence of (grad f )(x0) does not assure the
differentiability of f at x0. For example, the function f :R2

R, of values

f (x, y) =








,000

001

or yf either xi

and yif x

is partially derivable at the origin, and 0)0,0()0,0( 









y

f

x

f
. However, it

is not continuous at (0, 0), hence it is not differentiable at this point. In the
next section we will see that the continuity of the partial derivatives is a
sufficient condition for its differentiability.
2) The most frequent form of the differential of a function depending on
several real variables is

df = p
p

dx
x

f
dx

x

f
dx

x

f














...2

2
1

1

.

To obtain the precise meaning of this formula, we have to consider the
projections Pi : Rp

R, expressed by Pi (x1 , …, xi , …, xp) = xi. . It is easy to

see that each projection Pi, i = 1, 2, …, p, is a linear and continuous
function, i.e. Pi L (Rp, R) = B (Rp, R). In addition, each Pi is

differentiable at any x0Rp, and dPi(x0) = Pi . By convention (and tradition)

we note dPi = dxi , so that ),...,()( 10 pxi hhdx = Pi(h1 , …, hp) = hi for all

indices i = 1, 2, …, p. Replacing these expressions of hi in the differential
of f , we obtain the formula

)(
0

hdf x = ).())((...)())((
00 010

1

hdxx
x

f
hdxx

x

f
xp

p
x










Because h is arbitrary in Rp, we obtain the relation

0xdf = ....

00

1
1 x

p
px

dx
x

f
dx

x

f































It remains to take into consideration the fact that x0 is arbitrary in the set
ARp, on which f is differentiable. In applications we sometimes meet the

formula df = < grad f, dx >, where dx = (dx1, dx2, …, dxp).
The following notions and notations will be useful in introducing the

differential of a vector function of several real variables.
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2.17. Definition. Let the spaces X = Rp and Y = Rm be endowed with their

Euclidean norms. We note by A an open set of X , and we define the vector

function f : AY , of components fi : AR, I = 1,2, …, m, which are

considered partially derivable. Then the matrix

Jf (x0) =
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x
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f
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x

f
x

x

f

p

mmm

p

is called Jacobi’s matrix of f at x0 A. Obviously, at each x0 fixed in A, we
have Jf (x0) Mm,p (R). In the case m = p, the determinant

Det (Jf (x0)) )(
),...,(

),...,(
0

1

1
.

x
xxD

ffD

m

m
not


is called Jacobian of f at x0 .
2.18. Proposition. If the function f in the above definition is differentiable
at x0 A, then its differential has the value

)(
0

hdf x = Jf (x0) h =
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.

Proof. Because
0xdf  L (Rp, Rm), i.e. it is a linear operator acting between

finite dimensional linear spaces, it follows that its value at an arbitrary
point h = (h1 , …, hp)

T
Rp is given by the formula )(

0
hdf x = (ci j ) h. What

remains is to see how the constants cij depend on f . If f1 ,…, fm are the
components of f, then, similarly to proposition 2.12, it follows that they are
differentiable at x0 , and the general form of their differentials is

)()(
0

hdf xi = ci1 h1 + … +cip hp ,

where i = 1, …, m . More than this, according to proposition 2.15, we know
that the values of these differentials are given by the formula

)()(
0

hdf xi = p
p

ii
hx

x

f
hx

x

f
)(...)( 010

1 








for each i = 1, …, m . Consequently, cij = )( 0x
x

f

j

i




. }
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2.19. Remark. a) As before (see Remark 2.16), the existence of the partial

derivatives )( 0x
x

f

j

i




for all i = 1, …, m and j = 1, …, p, which represent

the elements of Jf (x0), does not assure the differentiability of f at x0 .
b) We may write the differential of a vector function of several variables in
a symbolic form too, by using the projections Pj : Rp

R, j= 1, …, p. In

fact, if we recall the traditional notation dPi = dxi , then we have

0xdf =
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If f is differentiable at any x0 A Rp, then we may omit to mention x0 ,

and so we obtain another symbolic form of the differential, namely

df =









































p
p

mm

p
p

dx
x

f
dx

x

f

dx
x

f
dx

x

f

...

...........

...

1
1

1
1

1

1

.

This one leads to the shortest form of the differential, which is

df = (Jf )  Tpdxdx ...1 = Jf dx.

If we compare the formula df = f / dx , which represents the differential of
a real function depending on a single real variable, to the similar formulas
df = < grad f, dx > and df = Jf dx for functions of several (real) variables,
then we see that grad f and Jf stand for f / . In this sense, we can interpret
grad f and Jf as representing the derivative of a real, respectively vectorial
function of several variables.
2.20. Approximating functions of several variables. The differential of a
real function of several variables (sometimes called total differential) may
be interpreted like a linear approximation of the (total) increment of the
function, corresponding to the increments x = dx, y = dy, etc. of the
variables. For example, if f (x, y) = x2 + xy – y2, then

f (x, y) = f (x + x, y + y) – f (x, y) =
= [(2x + y) x + (x – 2y) y] + [x2 + xy – y2] .

The principal part of this increment is the differential
df(x, y) = (2x + y) dx + (x – 2y) dy ,

which expresses a linear approximation of the forthcoming error.
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PROBLEMS § IV.2.

1. Show that every continuous bilinear function f  B2 (X 1, X 2; Y ) is

differentiable at each (x1
0, x2

0)  X 1 xX 2 = X , and

),(),(),( 0
2

0
1),( 0

2
0
1

xhfkxfkhdf xx  .

Hint. Evaluate

hf
kh

khf

kh

khf

kh

khxx










2222

2

1

2),( ),(

),(

),(0
2

0
1


.

2. Show that for real functions f and g, depending on several real variables,
the ordinary rules of differentiation remain valid, i.e.

d(f + g) = df + dg ; d(fg) = f dg + g df ; d(
g

f
) =

2g

fdggdf 
.

3. Show that the relative error of a product of real functions of several
variables approximately equals the sum of the relative errors of the factors.

4. Evaluate the function f (x, y) = x2 sin y at x=1.1, y=33, approximately.
Hint. Use the formula of the linear approximation

kyx
y

f
hyx

x

f
yxfkyhxf 









 ),(),(),(),( 00000000 .

5. Compute 1.023.01 approximately.
Hint. Take f (x, y) = xy , x0 = 1, y0 = 3, x = 0.02, y = 0.01, and compute

01.302.1 1 + df(1,3) (0.02, 0.01).

6. The measurements of a triangle ABC yield the following approximate
values: side a = 100m + 2m, side b = 200m + 3m and angle C = 60º + 1º.
To what degree of accuracy can be computed side c?
Hint. Express c by the generalized Pythagorean formula and compute dc.

7. Show that the function f :R2
R, which takes the values

f (x, y) =













,)0,0(),(0

)0,0(),(
22

yxif

yxif
yx

xy

is continuous and has partial derivatives on the entire R2, but it is not

differentiable at (0, 0).
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§ IV.3. FUNCTIONS OF SEVERAL REAL VARIABLES

We will use the notions introduced in the previous section to develop in
more details the differential calculus of real functions depending on several
real variables. We begin by the directional derivative of a scalar field:
3.1. Definition. The real functions depending on several real variables are
named scalar fields. If f : AR is a scalar field, i.e. A is an open subset of

Rp, p1, then the sets of the form

{xA : f (x) = c} = Sc ,
where cf (A), are called level surfaces. In particular, each point x0A
belongs to a level surface, namely that one for which c = f (x0). We say that
f is smooth iff it has continuous (partial) derivatives at each x0 A.

Let us choose a point x0 A and a unit vector  ),...,,( 21 p Rp (some

authors call  direction, and specify the condition 1 ). We say that the

field f is derivable in the direction  at the point x0 iff there exists the limit

.)(
)()(

lim 0

.
00

0
x

f

t

xftxf not

t 












If so, then we call it derivative of f in the direction  at the point x0 .
3.2. Remarks. a) The derivative in a direction may be interpreted in terms
of level surfaces. In particular, in R3, we may illustrate it as in Fig.IV.3.1.
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Fig. IV.3.1.



Because 1 , we have M0 M = t = t, hence the directional derivative

of f at M0 allows the more geometrical construction
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In particular, we can see that the most rapid variation of the field f at the
point M0 is obtained in the direction of the normal to the level surface
(which exists for smooth fields), when M0 M is minimal.
b) The derivative of f in a direction  at the point x0A reduces to the usual
derivative of g:(–, )R at 0R, where g(t) = f (x0 + tl). The domain of g

is determined by the number  > 0, which is chosen to obey the condition
that x0 + tl A for all t(–, ) (possibly because A is open!).
c) When we speak of a direction, we tacitly include the orientation of the
vector  . The derivative in a direction depends on this orientation, in the
sense that reversing the orientation changes the sign. More exactly,

)()(
)(

00 x
f

x
f

 







.

d) Each partial derivative is a derivative in the direction of one of the
coordinate axes. More exactly, if )0...,,0,1,0...,,0(k , where 1 stands on

the kth position, denotes the direction of the kth axis, k  {1, …, p}, then

)()( 00 x
f

x
x

f

kk 







.

Now we can extend the previous result concerning the partial derivability
of a differentiable function, according to the following:
3.3. Theorem. If f : AR, A Rp , is a differentiable field at x0A, then it

is derivable in any direction  Rp, and

)()(
00 


xfdx

f





.

Proof. According to theorem IV.2.3, the differential at  equals

0xdf ( ) =
t

xftxf

t

)()(
lim 00

0






.

In the terms of the above definition, this limit means )( 0x
f




. }

3.4. Consequences. a) The derivative of the scalar field f in the direction  ,
at the point x0 , equals the projection of grad f (x0) on the unit vector  . In
fact, this is a consequence of the relations  = 1, and

)()(
00 


xfdx

f





= < grad f (x0), > =  PMMxfgrad 00 cos)(  .

b) The greatest value of such a projection is obtained when the vectors 

and grad f (x0) are parallel. This means n , where n denotes the normal to

the level surface at x0 . In this case, since n = 1 too, we have

)(),()( 000 xfgradnxfgradx
n

f





.
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In R3, after calculating (grad f )(x0 ), we can find )( 0x
f




using the

sphere of diameter grad f (x0), as in Fig.IV.3.2., where it equals M0 Q .
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Fig. IV.3.2.



grad f x( )0

The following sufficient condition of differentiability is very useful in
many practical problems:
3.5. Theorem. If f is partially derivable on the neighborhood V of x0 and all

its partial derivatives 



V

x

f

k

: R, pk ,1 , are continuous at x0 , then this

function is differentiable at x0 . By extension to A, )(1 Af RC implies the

differentiability of f on A .

Proof. Let us note Axxxx p  )...,,,( 00
2

0
10 , and U = {hRp : x0 + h A}. If

Uhhhh p  ),...,,( 21 , including the case of some hk = 0, then we may

decompose the increment f (x0 + h) – f (x0) in the following sum:
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1 ppppp xxxxfhxxxxf   .

Using the Lagrange’s theorem on finite increments, successively applied
to each of the square brackets from above, we obtain

f (x0 + h) – f (x0) = ),...,,( 0
2

0
21

1
1 pp hxhx

x
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where k is between 0
kx and kk hx 0 for all pk ,1 .
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Now, let us consider the linear function
0xL : Rp R, of values

0xL (h1 , …, hp ) = 10
1

)( hx
x

f





+ 20

2

)( hx
x

f





+ … + p

p

hx
x

f





)( 0 .

To show that
0xL is the differential of f at x0 , we first evaluate

f (x0 + h) – f (x0) –
0xL (h) =

= 10
1

0
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0
21

1
)(),...,,( hx

x

f
hxhx
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f
pp 
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0
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Then, the differentiability of f at x0 follows from the inequality
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In fact, since 1
h

hk for all pk ,1 , and the partial derivatives of f are

continuous at x0 , it follows that

.0
)()()(

lim 000

0




 h

hLxfhxf x

h

The last assertion of the theorem follows by applying the former result to
arbitrary x0 A . }

We mention that the continuity of the partial derivatives is still not
necessary for differentiability (see problem 2 at the end of the section).

The rule of differentiating composed functions, established in theorem
IV.2.6-b, has important consequences concerning the partial derivatives of
such functions:
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3.6. Theorem. Let us consider the functions f : AB, g : B Rm , where

ARp and BRn are open sets. If f is differentiable at x0A and g is

differentiable at f (x0)B, then g f : ARm is differentiable at x0 and for the

corresponding Jacobi matrixes we have
J )( fg  (x0) = J ))(( 0xfg Jf (x0). (*)

Proof. The differentiability of g f was established in theorem IV.2.6-b, as
well as the formula

000 )()( xxfx dfdgfgd   . According to proposition

IV.2.18, we represent these differentials by Jacobi matrixes. Using a well-
known theorem from linear algebra (see [AE], [KA], etc.), the matrix of the
composed linear operators, in our case )( 0xfdg and

0xdf , equals the

product of the corresponding matrixes. }

3.7. Remark. The formula (*) from above concentrates all the rules we
need to write the partial derivatives of composed functions, as for example:
a) The case p = m = 1, n = 2 . If t is the variable of f , and u, v are the
variables of g, then formula (*) becomes:

)()( / tfg  =
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.

b) The case p = n = 2, m = 1. Let x, y be the variables of f and u, v be the
variables of g. From (*) we obtain:
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Consequently, the partial derivatives of h = g  f are:
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Generalizing these formulas, we may retain that each partial derivative of
a composed function equals the sum of specific products taken over all the
components, which contain the chosen variable.
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c) The case p = m = n. In this case, it is recommended to interpret f and g
as transformations of Rn . Because the determinant of a product of matrixes

equals the product of the corresponding determinants, we obtain:

),...,(

),...,(

),...,(

),...,(

),...,(

))(,...,)((

1

1

1

1

1

1

n

n

n

n

n

n

xxD

ffD

uuD

ggD

xxD

fgfgD



.

Another important topic of the differential calculus refers to the higher
order partial derivatives, which are introduced by the following
3.8. Definition. Let f : AR, where ARp is open, be partially derivable

relative to xk , pk 1 , in a neighborhood VA of x0 A. If
kx

f




:VR is

also derivable relative to xj , pj 1 , at x0, then we say that f is two times

derivable at x0 relative to xk and xj . The second order derivative is noted

)()( 0

2

0 x
xx

f
x

x

f

x kjkj 



















.

If all second order derivatives there exist and are continuous on A, then

we say that f is of class C2, and we write )(2 Af RC .

By induction, we define the higher order derivatives, k1 times relative to
x1 , and so on, kp times relative to xp , where k1 + … + kp = n , noted

pk
p

k

n

xx

f





...1

1

.

Similarly we define classes Cn and C ∞ .
3.9. Remark. The higher order derivatives depend on the order in which

we realize each derivation. In particular,
kj xx

f



2

means that we have first

derived relative to xk , and after that relative to xj . The result is generally

different from
jk xx

f



2

, where we have derived in the inverse order. For

example, let us consider the function f : R2
R, of values

f (x, y) =















.)0,0(),(0

)0,0(),(
22

22

yxif

yxif
yx

yx
xy

A direct evaluation shows that 1)0,0(1)0,0(
22











xy

f

yx

f
.

Such situations justify our interest in knowing sufficient conditions for
the equality of the mixed partial derivatives realized in different orders:
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3.10 Theorem. (due to H. A. Schwarz) If )(2 Af RC , where ARp is an

open set, then the equality

jkkj xx

f

xx

f








 22

holds on A, for all j, k = 1, 2, …, p .
Proof. It is sufficient to discuss the case p = 2. Let us consider the auxiliary
functions (x, y) = f (x, y) – f (x0 , y) and (x, y) = f (x, y) – f (x, y0), so that

(x, y) – (x, y0) = (x, y) – (x0 , y).
By applying the Lagrange’s theorem to each side of this equality we obtain:

)(),()(),( 0101 xxy
x

yyx
y
















.

It remains to replace  and , namely to apply the finite increments’
theorem, and finally to use the continuity of the mixed derivatives. }

3.11. Remark. The continuity of the mixed derivatives is not necessary for
their equality. This is visible in the case of f : R2

R, of values

f (x, y) =
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In fact, a direct calculation leads to
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This function is not continuous at the origin. However,

0)0,0()0,(
1

lim)0,0(
0

2
























 y

f
x

y

f

xyx

f

x
,

hence the equality )0,0(0)0,0(
22

yx

f

xy

f









is valid.

Now, let us study the relations between the second order differentials and
the second order derivatives of a real function of several variables. This
study is based on a specific notion involving the partial derivatives:
3.12. Definition. Let us consider that the function f : AR, where ARp is

an open set, has all second order partial derivatives at x0A. The matrix

H f (x0) =

pjiji

x
xx

f

,...,1,

0

2

)(




















is called Hesse matrix (or Hessean) of f at x0.
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Obviously, the Hessean matrix of )(2 Af RC is symmetric by virtue of

Schwarz’ theorem 3.10. To see how the Hessean matrix represents a second

order differential, we recall that
0

2
xfd is a bilinear function, and matrixes

represent bilinear functions on finite dimensional spaces. More exactly:
3.13. Lemma. Let B denote a fixed orthonormal basis in Rp (e.g. the

canonical one, as in I.3.8b). To each bilinear function B : Rp x Rp
R there

corresponds a square matrix B = (bij)i,j=1,…,p such that B (x, y) = xT B y, i.e.

B (x, y) =  



































pppp

p

p

y

y

bb

bb

xx 









1

1

111

1 .

Proof. Referred to the (canonical) base B = {e1, …, ep} of Rp, we have

x = 


p

i
iiex

1

and y = 


p

j
jjey

1

.

If we note bij = B (ei , ej), then B (x, y) = 


p

ji
jiij yxb

1,

. }

In our case, we have to express the components bij by the corresponding

values of B =
0

2
xfd , using the second order partial derivatives of f.

3.14. Theorem. Let B = {e1, …, ep} be the canonical basis of Rp . If the

function f : A R, where ARp is an open set, is two times differentiable

at x0A, then:
a) f is twice partially derivable relative to all its variables;

b) )( 0

2

x
xx

f

ji


=

0

2
xfd (ei , ej) holds for all i, j = 1, ..., p;

c)
0

2
xfd is represented by the Hessean matrix H f (x0), i.e.

0

2
xfd (h, k) = 

 

p

ji
ji

ji

khx
yx

f

1,
0

2

)( .

Proof. For the assertions a) and b), we start with the hypothesis that there

exists
0

2
xfd B (Rp, B (Rp, R)) such that

0
).,(

lim
000

2

0




 h

hfddfdf xxhx

h
.

Using the expression of the norm of a linear function, we obtain
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0
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lim
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h
.

Let us remark that )()( 00
x

x

f
edf

j
jx




 , and

0

2
xfd (h, k) = u

0

2
xfd (ei , ej)

whenever k = ej and h = u ei for some uR. If u0, then h0, hence

0),(
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.

c) We apply the above lemma 3.13 to B =
0

2
xfd . }

3.15. Remark. The existence of the second order partial derivatives does
not generally assure the twice differentiability of a function. To exemplify
this fact we may use the same function f : R2

R as in remark 3.11, namely

f (x, y) =
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In fact, it has null partial derivatives of the first and second order at (0, 0),
so if we suppose the double differentiability, then we should have

),()0,0( 2 RRBdf , and )),(,()0,0(
2

22 RRR BBfd .

Consequently, from

0
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we deduce
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On the other hand, evaluating ),( yx
x

f




and ),( yx

y

f




at (x, y)  (0, 0),

and considering k = (0,1), h = 








1
,

e

u
u , we obtain

eeh

dfh 2
 , which

does not tend to 0. The contradiction shows that d2f does not exist at (0, 0).
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As in the case of the first differential (compare to theorem 3.5 from
above), we can show that the continuity of the second order derivatives is a
sufficient condition for the double differentiability:
3.16. Theorem. Let ARp be an open set, let x0 A be fixed, and let V be

a neighborhood of x0 , such that V A . If the function f : A R has partial

derivatives of the second order on V, which are continuous at x0 , then this
function is twice differentiable at x0 . In addition, if f C2 (A), then f is two
times differentiable on A .
Proof. If we note ),...,,( 21 phhhh  , and ),...,,( 21 pkkkk  , then the map
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is bilinear from Rp x Rp to R . To each h  Rp \ }{ pR we attach a linear

function )(
0

hLx , which carries kRp to 
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that df is differentiable at x0 , we first evaluate:
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According to theorem 3.5, the continuity of the second order derivatives
is sufficient for the differentiability of the first order derivatives, hence
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Because this is valid for each j = 1, ..., p, we may conclude that
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Consequently, f is two times differentiable at x0 and
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The last assertion of the theorem follows from the fact that if f C2 (A),
then the initial hypotheses hold at each x0A . }

3.17. Remarks. 1) The condition of continuity of the second order partial
derivatives is generally not necessary, for the second order differentiability.
For example, we may consider the function f : R2

R, defined by

f (x, y) =















.)00(),(0

)00(),(
1

sin)(
22

222

,yxif

,yxif
yx

yx

This function is two times differentiable at the origin, and d2f (0,0)(h)(k) = 0
at all h, k  R2 (see problem 3 at the end of the section), but its partial

derivatives are not continuous at (0, 0).
2) Similarly to the first order differential (see remark IV.2.16.b), we may
write the second order differential in a symbolic form too. We obtain it if
we take into consideration the projections Pi : Rp

R, defined by Pi (x) = xi

for all i = 1, …, n. Because of the tradition to note dPi = dxi , we have
)()(

0
hdx xi = Pi(h1 , …, hp) = hi

for all i = 1, 2, …, p. As a consequence of the above theorem 3.14.c, we
represent the second order differential by the formula
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0

2
xfd (h, k) = 
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.

Since h and k are arbitrary, a natural temptation of raising this equality to
the function level is justified. However, we cannot do it directly, since

         ),()()()()()()(
0000

khdxdxkdxhdx xjxixjxi  .

To overpass this difficulty, we replace the usual product of functions
   ),(),(),)(( khkhkh  

by the so called tensor product of functions, which takes the values
   )()(),)(( khkh   .

Consequently, the second order differential at x0 takes the form

0

2
xfd =    
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Again, because x0 is arbitrary, we may briefly write

d2f = 
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2

.

Beside this rigorous way of writing the second order differential, used in
[CI], [PM1], etc., there are books where we still find the “simpler” forms

0

2
xfd =    
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respectively

d2f = 
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2

.

3) Based on multi-linear forms we obtain similar results for higher order
differentials. More exactly, if f is a function of class Cn , then its differential
of order n takes the symbolic form
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For the sake of simplicity, we may accept to write
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but the exact meaning of this formula needs a special explanation.
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Another important topic of the analysis of a real function of several
variables concerns the Taylor’s formula, which is of great use in the study
of extrema. We will deduce this formula from the similar one, expressed
for real functions of a single real variable, previously presented at II.3.24.
First, we reformulate this result in the following convenient form:
3.18. Theorem. Let g: IR be a function of class Cn+1 on the interval

IR, and let us fix x0I. For every xI there exists  (depending on x)

between x0 and x, such that

g(x) = g(x0) + )(
!1

1
00

xxdgx  + ),(
!2

1
00
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xxxxgd x  + … +
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)!1(

1
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00
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times
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x
n xxxxgd

n
xxxxgd

n
 .

We recall that, for shortness, we frequently use the notation x – x0 = h, and

),...,(

times
0 

n

x
n hhfd = )(

0

n
x

n hfd = n
x

n xxfd )( 00
 .

Before formulating the similar result in Rp , we recall that by interval of

end-points x1 and x2 in this space we understand the set
[x1 , x2 ] = {x  21)1( xtxt Rp : ]1,0[t }.

Now we can show that the Taylor’s formula keeps the same form for real
functions of several real variables:
3.19. Theorem. If f : AR is a function of class Cn+1 on the open and

convex set ARp, and x0 A is fixed, then to each xA there corresponds

some ξ [x0 , x] such that

f (x) = f (x0) + )(
!1

1
00

xxdfx  + 2
0

2 )(
!2

1
0

xxfd x  + … +

1
0

1
0 )(

)!1(

1
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1
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 nnn
x

n xxfd
n

xxfd
n

 .

As before, this is called Taylor’s formula of the function f around x0, with
the remainder (i.e. the last term) in Lagrange’s form.
Proof. Let us introduce the auxiliary function g: [0, 1] R , defined by

g(t) = f ((1 – t ) x0 + t x ) .
This function is well defined because A is convex, hence [x0 , x]  A holds
for every xA. From the hypothesis it follows that g is n+1 times derivable
on [0, 1], and according to the above theorem 3.18, the formula

g(1) = g(0) + 







n

j

nj g
n

g
j1

)1()( )(
)!1(

1
)0(

!

1


holds for some  (0, 1). If we note x0 = (x1
0, …, xp

0), x = (x1, …, xp), and
we calculate the derivatives as for composed functions, then we obtain
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g(0) = f (x0)
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Similarly, for  = (1 – ) x0 +  x  [x0 , x], it follows

g(n+1)() = 1
0

1 )(   nn xxfd  .

To accomplish the proof it is sufficient to see that g(1) = f (x). }

In order for us to study the extreme values of a real function of several
variables we shall precise some terms:
3.20. Definition. Let f : AR be an arbitrary function defined on the open

set ARp. The point x0 A is called a local maximum of f iff there exists a

neighborhood V of x0 , VA, such that for all xV we have
f (x) – f (x0)0 .

Dually, the local minimum is defined by the converse inequality
f (x) – f (x0)0 .

The local maximum and the local minimum points of f are called
extremum (extreme) points of f.

If all the partial derivatives of f are void at x0 , i.e.

0)( 0 



x

x

f

j

, j = 1, …, p,

then we say that x0 is a stationary point of f .
Now, we can formulate necessary conditions for extremes:

3.21. Theorem. (Fermat) Let us consider that f : AR, where ARp is an

open set, has all the partial derivatives at x0 A. If x0 is an extreme of f then
x0 is a stationary point of f.
Proof. Let r >0 be such that S(x0, r)  A and for all xS(x0 , r) the
difference f (x) – f (x0) has a constant sign. Let {e1, …, ep} denote the
canonical base of the linear space Rp. For each j = 1, …, p we define the

function gj : (– r, + r) R by

gj (t) = f (x0 + t ej ) .
Obviously, t0 = 0 is an extreme point of gj for each j = 1, …, p. In addition,
gj is derivable at t0 = 0, and its derivative equals
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)()0( 0x
x

f

dt

dg

j

j




 .

Applying the Fermat’s theorem, for each gj, where j = 1, …, p , we obtain
g /

j (0) = 0, hence x0 is a stationary point of f. }

3.22. Remarks. a) In order to find the local extreme points of a derivable
function we primarily determine the stationary points by solving the
system:
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f
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f



However, we shall carefully continue the investigation because not all
stationary points are extremes. For example, the function f : R2

R, of

values f (x, y) = x3 – y3, is stationary at the origin (0, 0), i.e.

0)0,0()0,0( 









y

f

x

f
,

but the difference f (x, y) – f (0, 0) changes its sign on any neighborhood of
this point. In other words, we need sufficient conditions to establish which
stationary point is extreme and which is not.
b) The sufficient conditions for extreme points will be based on the study
of the second order differential. In fact, according to the Fermat’s theorem,
since

0xdf = 0, the increment of f takes the form

f (x) – f (x0) = d2fξ (x – x0, x – x0) .
More than this, the second order differential is calculated in a particular

case h = x – x0 = k, when it reduces to a quadratic form (see § II.4). We
recall that, generally speaking, : Rp

R is named quadratic form iff there

exists a bilinear symmetric (and continuous) function : Rp x Rp
R,

such that the equality
 (x) =  (x, x)

holds at each xRp .

3.23. Theorem. Let f : AR be a function of class CR
2 (A), where A  Rp

is an open and connected set, and let x0 A be a stationary point of f. If the
quadratic form : Rp

R, defined by

 (h) = ),(
0

2 hhfd x

is positively (negatively) defined, then f has a local minimum (respectively
maximum) at the point x0 .
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Proof. Let us consider that  is positively defined. Then, there exists m>0
such that  (x – x0)  m || x – x0 ||2 for all xRp. On the other hand, from the

Taylor’s formula for n =1, at the stationary point x0 , we deduce
f (x) – f (x0) =

= 
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If we note the last sum by  (x), then the above equality becomes

f (x) – f (x0) =
2

1
 (x – x0) +  (x) .

The continuity of the second order derivatives of f at x0 leads to

0
)(

lim
2

00


 xx

x

xx


.

Now, let r > 0 be chosen such that at each xS (x0 , r) we have

0
2

)(
2

0




m

xx

x
.

Consequently, at each x in this neighborhood, the inequality

f (x) – f (x0) 0
)(

2

2
02

0

















 xx

xx

xm 
,

i.e. x0 is a minimum point of f.
Similarly, we discuss the case of a maximum. }

3.24. Corollary. In the case p = 2, let f : AR be of class CR
2(A), and let

(x0 , y0) be a stationary point of f. If we note

a = ),( 002

2

yx
x

f




and  =
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,

then, according to the above tests of positivity (negativity), we distinguish
the following possibilities:

1. if a >0 and δ > 0, then f has a minimum at x0

2. if a < 0 and δ > 0, then f has a maximum at x0

3. if δ < 0, then x0 is no extreme point of f.
3.25. Remark. There are situations when we are not able to establish the
nature of a stationary point by using the results from above. For functions
of two variables, we mention the following such cases:
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a) δ = 0 in the previous corollary. We must directly study the sign of the
difference f (x) – f (x0).

b)
0

2
xfd = ),( RR pB . The investigation of the higher order differentials is

necessary to obtain information about f (x) – f (x0).
c) f : KR, where KRp is a compact set. If f is continuous, then f is

bounded and the extreme values are effectively reached at some points,

but it is possible these points to be in K \

K = Fr K .

Practically, in each case may occur more situations, as in the following:
3.26. Example. Let us study the extreme values of the function f : R2

R,

f (x, y) = x3 y2 (6 – x – y) .
We obtain the stationary points by solving the system




















.03212),(

03418),(

2343

322322

yxyxyxyx
y

f

yxyxyxyx
x

f

The stationary points have one of the forms:
(a) (x1 , y1) = (3, 2); (b) (x0 , 0) ,   x0 R; or (c) (0, y0) ,   y0 R .

By evaluating the second order derivatives in these cases, we obtain the
following Hessean matrices:

(a) H f (3, 2) = 












162108

108144

(b) H f (x0 , 0) =














 )6(20

00

0
3
0 xx

(c) H f (0, y0) = 








00

00
.

In case (a), following the Sylvester’s test, we evaluate a = – 144 < 0, and
δ = 24 ·36 > 0, hence (x1 , y1) = (3, 2) is a local maximum.

The case (b) contains the following sub-cases:
(b1) x0 = 0,
(b2) x0 = 6,
(b3) x0 (0, 6), and
(b4) x0 (– ∞, 0) (6, ∞).

In the sub-case (b1) the above techniques are useless because all partial
derivatives are null at (0, 0) up to the 5th order. In this situation, we have to
find other ways to study the sign of the difference f (x, y) – f (0, 0). Because
in “small” neighborhoods of the origin we have 6 – x – y > 0, we deduce

sign [f (x, y) – f (0, 0)] = sign [x3 y2 (6 – x – y)] = sign x .
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This shows that f (x, y) – f (0, 0) changes its sign in any neighborhood of
(0, 0), since x does. Consequently, (0, 0) is not an extreme point of f.

We may analyze the sub-case (b2) by using the third differential, which is
d3f (6, 0) (x – 6, y)3 = – 362 (x – 6) [y2 + (x – 6)2] .

Obviously, d3f (6, 0) changes its sign in any neighborhood of (6, 0). Because
sign [f (x, y) – f (6, 0)] = sign d3f (6, 0) (x – 6, y)3 ,

it follows that (6, 0) is not an extreme point of f .
We may reduce the analysis of the sub-cases (b3) and (b4) to the study of

the second order differential, since

f (x, y) – f (x0 , 0) =
2

1
d2f (ξ,) (x – x0 )2 = ξ 3 (6 – ξ ) · y2 ,

where ξ is laying between x0 and x. Consequently, if x0 (0, 6), then there
exists a neighborhood of (x0 , 0) where we have f (x, y) – f (x0 , 0) 0, with
equality at that point only, hence each point of the form (x0 , 0) is a local
minimum of f . Similarly, if x0(– ∞, 0) (6, ∞), then each point (x0 , 0) is a
local maximum of f.

In case (c), the increment of f takes the form:

f (x, y) – f (0 , y0) = ...),(
!3

1 3
0),0(

3
0

 yyxfd y

Because 3
0

2
0

3
0),0(

3 )6(6),(
0

xyyyyxfd y  , we have to distinguish

the following sub-cases:
(c1) y0 = 0,
(c2) y0 = 6, and
(c3) y0 R \ {0, 6}.

Sub-case (c1) coincides with (b1). The sub-cases (c2) and (b2) are similar.
In fact, from the equalities

sign [f (x, y) – f (0, 6)] = sign [x3 y2 (6 – x – y)] = sign [x(6 – x – y)],
it follows that f (x, y) – f (0, 6) changes its sign on any neighborhood of the
point (0, 6). Consequently, (0, 6) is not an extreme point of f.

In the sub-case (c3), we have 0),0(
3

0
yfd , but because of x3, it does not

keep a constant sign on a neighborhood of (0, y0). So we conclude that
these points are not extremes of f .
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PROBLEMS § IV.3.

1. Calculate the Jacobians of the functions f , g : AR3, where A is an open

set in [0, ∞) x R2, and the values of these functions are

f (ρ, θ, φ) = (ρ sin θ cos φ, ρ sin θ sin φ, ρ cos θ)
g(ρ, φ, z) = (ρ cosφ, ρ sin φ, z).

Hint. Write the Jacobi’s matrixes, then evaluate the determinants (as in
definition 2.17). Det (Jf ()) = 2 sin  ; Det (Jg (z)) = .

2. Show that the partial derivatives of the function f : R2
R, of values

f (x, y) =








 

)0,0(),(0

)0,0(),()sin()( 2/12222

yxif

yxifyxyx

are discontinuous at (0, 0), but f is differentiable at this point.
Hint. At (0, 0) we have

0
0sin

lim)0,0(

12

0









 x

x

x

f x

x
,

and otherwise

222222

1
cos

21
sin2),(
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yx
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f










.

To see the discontinuity of this derivative at (0, 0), consider particular

sequences, or analyze 















 xx

x

x
xx

x

f

xx

1
cos

21
sin2lim)0,(lim

00
, etc .

Similar results concern
y

f




. However, f is differentiable at (0, 0), and

),()0,0( 2 RRBdf , since
h

fhhf

h

0)0,0(),(
lim 21

0




= 0 .

3. Let the function f : R2
R, be defined by

f (x, y) =








 

.)0,0(),(0

)0,0(),()sin()( 2/122222

yxif

yxifyxyx

Show that:
a) This function is two times differentiable at (0,0), but its second order

partial derivatives are not continuous at this point, and

b) The equality
xy

f

yx

f








 22

holds on the entire R2 (without using the

Schwarz’ theorem 3.10).
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Hint. If we note 22 yx  , then the first order partial derivatives are
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These derivatives are everywhere continuous, hence f is differentiable. In
particular, ),()0,0( 2 RRBdf . The second order partial derivatives are not

continuous at (0,0), but

h

dfdfh ),(0 2 RRL
=

h

dfh =
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Consequently, f is two times differentiable at (0, 0), and at each h R2

we have ),()0,0(
2

2)( RRBhfd , i.e. 0))(()0,0(
2 khfd at all h, k R2 .

4. Using the fact that grad f (x0) || n, where n is the normal to the level
surface )( 0xfS , at x0 , determine the components of n for a surface of

explicit equation z = (x, y) in R3 .

Hint. Consider f (x, y, z) =  (x, y) – z, so that

grad f (x0 , y0 , z0) = 
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yx
y

yx
xz

f

y

f

x

f

zyx


.

Using the Monge’s notation p =
x


, q =

y


it follows that n  (p, q, – 1).
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5. Calculate the derivative of the function f : R3
R, of values

f (x, y, z) = x2 + 2y2 + 3z2

at the point (2, 1, 1), in the direction of the unit vector
2

ki
e


 
 .

Hint. ),,( 000 zyx
e

f




= )(),,( 000

edf zyx


=  ezyxfgrad


),,,)(( 000 .

6. In what directions e


, function f (x, y) = 4 2xy has derivatives at (0, 0)?

Hint. Function f is not differentiable at (0,0), so we have to apply the very

definition of the derivative in a direction. If e


= i


cos  + j


sin , then

t

t

t

ttf

e

f

tt

4 23

00

sincos
lim

)sin,cos(
lim)0,0(









.

This limit exists only for  = k
2


, k = 0, 1, 2, 3.

7. Find the unit vector e


, which is tangent to the plane curve of implicit

equation x2 + y2 – 2x = 0, at the point 










2

3
,

2

1
. Evaluate the derivative of

the function f (x, y) = arctg
x

y
at that point, in the direction of e


.

Hint. Use geometric interpretations, or derive in the explicit equation of the

curve, y = + 22 xx  , to find e


. Differentiate f at that point.

8. Let us consider the function f (x, y) = x3 + xy2 and the point a = (1, 2).
Calculate the partial derivatives of first and second order, and write the first
and second order differentials of f at a. Find the derivative of f at a in the
direction e


= (cos , sin ). In what sense could we speak of a second

order derivative of f at a in the fixed direction e


?

Hint. The differentials are k
y

f
h

x

f
khdf 









 )2,1()2,1(),()2,1( = 7h + 4k,

and 2
2

22
2

2

2

)2,1(
2 )2,1()2,1(2)2,1(),( k
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f
kh

yx

f
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x

f
khfd 














 , hence

22
)2,1(

2 286),( kkhhkhfd  . If we fix e


, then
e

f





(x, y) is defined on a

neighborhood of a, where it is differentiable. Its derivative in the direction
e plays the role of the second order derivative of f in this direction.
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9. Show that the functions of values u(x, y) = arctg
x

y
and v(x, y) = ln

r

1
,

where r = 22 )()( byax  , are harmonic where defined.

Hint. u and v satisfy the Laplace’s equation 0
2

2

2

2











yx


.

10. We note u(t, x) = A sin(cλt + μ) sin λx and v = (x – ct) + (x + ct),
where A, λ, μ, c are constants, and ,  are arbitrary functions of class C2 .
Show that u and v satisfy the D’Alembert equation of the oscillating string.

Hint. The D’Alembert’s equation is 0
1

2

2

2

2

2











x

f

t

f

c
.

11. Write the Taylor polynomial of the nth degree for f (x, y) = ex+y at the
point (x0 , y0) = (1, –1). What happens when n ? What should mean

dnz = z
y

dy
x

dx

n


















?

Hint. Note x + y = t and observe that the Taylor’s series of e t is absolutely
and almost uniformly convergent to this function. The symbolic formula
describes the higher order differential as a formally expanded binomial.

12. Let us note r = 22 yx  and let n be the normal to the circle of center

(0, 0) and radius r. Show that
2

1

11

rdr

r
d

n

r
























, and sketch the vector

field grad
r

1
on R2 \ {0}.

Hint. The vectors n , r, and grad
r

1
are collinear.

13. Using the Hessean matrix, calculate the second order differential of the
function f (x, y) = exy at a current point (x0 , y0) R2.

14. Calculate the second order derivatives of u(x, y) = f (x2 + y2, x2 – y2, xy),
where f is a function of class C2 on R2. Express d2f as a differential of df in

the case of f (u, v, w) = u – 2v2 + 3vw.
Hint. d2x=0 only if x is an independent variable!
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15. Using Taylor’s formulas up to the second order terms, approximate
3 98.0 , (0.95)2.01, cos 1˚, e0.1 sin 1˚. Give geometrical interpretation to the
results, as quadratic approximations.
Hint. Use Taylor’s formulas for one and two variables.

16. Test the following function for an extremum: z = x3+ 3xy2 – 15x – 12y.
Solution. (2, 1) is a local minimum, and (–2, –1) is a local maximum, but at
the stationary points (1, 2) and (–1, –2) there is no extremum.

17. Break up a positive number a into three nonnegative numbers so that
their product be the greatest possible.
Hint. If we denote the three numbers by x, y and a – x – y, then we are led
to find the maximum of the function f (x, y) = xy(a – x – y) in the triangle
x0, y0 and x+ ya. The unique stationary point is (a/3, a/3). The second
order differential shows that it is indeed a maximum point.

18. Test the following functions for points of maximum and minimum:
(a) f (x, y) = x2 + xy + y2 – 2x – y

(b) g (x, y) = (x2 + y2) )( 22 yxe 

(c) h (x, y) =
221

1

yx

yx




.

Solutions. (a) f takes the minimum value –1 at the point (1,0).

(b) gmin = 0 at (0, 0) and gmax =
e

1
at the points of the circle x2 + y2 = 1;

(c) hmax = 3 at (1, –1).

19. Show that the function f (x, y) = (1 + ex) cos y – x ex has infinite many
points of maximum but no minimum.
Hint. Find the stationary points, and study the higher order differentials at
these points.

20. Find the increment of the function f (x, y) = x3 – 2y3 + 3xy when passing
from (1, 2) to (1 + h, 2 + k). Determine all functions of class C∞ on R2 for

which this increment is a polynomial in h and k.

Hint. We have 0),(
4

00
yxfd . From dnf = 0 on A, we deduce dn-1f = const.,

hence f must be a polynomial in x, y. Generally speaking, the polynomial
functions are characterized by null differentials of higher orders.
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§ IV.4. IMPLICIT FUNCTIONS

Until now we have studied only explicit functions, for which it is
explicitly indicated what operations on the variables lead to the value of the
function. The typical notation was y = f (x1 , …, xn). However, we may
express the dependence of y on the variables x1 up to xn by a condition of
the form F(x1 , …, xn; y) = 0 , where making y = f (x1 , …, xn) explicit is
either impossible, or non-convenient (e.g. non-unique, too complicated,
useless, etc.). The aim of this section is to clarify how to obtain the explicit
functions (Theorems 4.3 and 4.6 below), and to deduce several theoretical
and practical consequences of this result, concerning the local inversion,
smooth transformations, and conditional extrema.
4.1. Example. The equation of the unit circle in the plane, x2 + y2 = 1,
establishes a dependence of y on x, but this curve cannot be the graph of a
function y = f (x), because to each x(–1, +1) there correspond two values
of y. However, excepting the points (–1, 0) and (1, 0), for each (x0 , y0)
belonging to the circle there exists a neighborhood V V (x0 , y0), such that
the arc of the circle, which is contained in V, actually is the graph of some

explicit function, namely y = 21 x , or y = – 21 x .
Our purpose is to generalize this case, but primarily we have to precise

some notions we deal with.
4.2. Definition. Let DR2 be an open set, and let F : D R be a function.

We note by Dx = Px (D) the x-projection of D and we choose ADx . Each
function f : A R, which verifies the equation F(x, y) = 0 , when we

replace y = f (x), i.e. F(x, f (x))  0 on A, is called solution of this equation.
If this solution is unique, we say that f is implicitly defined by the equation
F (x, y) = 0, or, in short, f is an implicit function (of one variable).
4.3. Theorem. Let us consider an open set DR2, a point (x0 , y0)D, and a

function F : D R. If the following conditions hold

1) F (x0 , y0) = 0,
2) F is of class C1 on a neighborhood W of (x0 , y0), and

3)
y

F




(x0 , y0)  0, then

(a) There exist UV (x0), VV (y0), and f : U V, which is the unique
solution of the equation F (x, y) = 0, such that f (x0) = y0 ;

(b) f CR
1(U), and for every xU we have

f / (x) = – 





















))(,())(,( xfx

y

F
xfx

x

F
(*)

(c) If F 
k
RC (W), then f k

RC (U), for all kN* .



§ IV.4. Implicit functions

225

Proof. (a) To make a choice, let us suppose that
y

F




(x0 , y0) > 0. Because

y

F




is continuous on W, there exist a > 0 and b > 0 such that

y

F




(x, y) > 0

for all (x, y) which satisfy the inequalities | x – x0 | < a and | y – y0 | < b.
Consequently, the function yF(x0 , y), defined on (y0 – b, y0 + b), is
strictly increasing. In particular, because the inequalities

y0 – b < y0 – ε < y0 <y0 + ε < y0 + b
hold for any (0, b), it follows that

F(x0 , y0 –  ) < F(x0 , y0) = 0 < F(x0 , y0 + ).
From the second hypothesis we deduce that the functions

xF(x, y0 –  )
xF(x, y0 +  )

are continuous on (x0 – a, x0 + a), hence there exists (0, a) such that
F(x, y0 – ) < 0 < F(x, y0 + )

holds for all x(x0 – , x0 + ). Using the third hypothesis in the sense that

y

F




(x, y) > 0 holds whenever (x, y) satisfy | x – x0 | < a and | y – y0 | < b, it

follows that the function yF(x, y) is strictly increasing on [y0 – ε, y0 + ε ]
for each fixed x(x0 – , x0 + ). Being continuous on this interval, it has
the Darboux property, hence there exists a unique y(y0 – , y0 + ) such
that F(x, y) = 0. In brief, we have constructed the function

f : U = (x0 – , x0 + ) V = ( y0 – , y0 + ),
such that F(x, y = f (x)) = 0 holds at each xV, i.e. F(x, f (x))  0 is valid on
the set U. Using the uniqueness of the function y = f (x), and the fact that
F(x0 , y0) = 0, it follows that f (x0) = y0 .
(b) Primarily we show that f is continuous on U. In fact, in the above
construction,  depends on , and f (x) V means | f (x) – y0 | <  . If we
repeat this construction for another  / > 0, then we find  / > 0 and function
f1 : (x0 –  /, x0 +  / )  ( y0 –  /, y0 +  / ), such that | f1 (x) – y0 | <  / holds
whenever | x – x0 | <  /. The uniqueness of f , and the equality of f and f1 at
x0 , i.e. f (x0) = f1(x0) = y0 , lead to f (x) = f1(x) at all x (x0 –  /, x0 +  / ).

Now, let us analyze the derivability of f at an arbitrary point x*
U, where

f (x*) = y*
V . If we write the Taylor formula at (x*, y*) for n = 0, then

F(x, y) – F(x*, y* ) = ))(,())(,( ** yy
y

F
xx

x

F












where (ξ, η) is lying between (x*, y*) and (x, y). In particular, if we replace y
by f (x), then at each xU, x x*, we obtain

  0)()(),())(,( ** 








xfxf

y

F
xx

x

F
 .
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Equivalently, this relation takes the form

),(

),(
)()(

*
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y

F
x

F

xx

xfxf












.

Because f is continuous at x*, if x tends to x* it follows that f (x)  f (x* ),
x* , and y* = f (x*). Consequently, the derivability of f follows from

the continuity of
x

F




and

y

F




at (x*, y*), and the value of this derivative is

))(,(

))(,(
)(

**

**
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xfx
y

F

xfx
x

F

xf








 .

In particular, this shows that f / is continuous at all x*
U .

(c) Since kN*, we will use mathematical induction. Case k = 1 is just (b)

from above. Let us suppose that the property is valid for k = n. In order to

prove it for k = n + 1, it is sufficient to remark that from F
1n

RC (W), it

follows
x

F




and

y

F






n
RC (W). According to (*), we have f /


n
RC (U ), and

finally f 1n
RC (U). }

4.4. Remarks. (a) The above theorem remains valid if instead of xR we

take x = (x1,…, xp) Rp for some p > 1, and the proof is similar. In this case

function f depends on p real variables, and for all j = 1, …, p we have

))(,(

))(,(

)(

xfx
y

F

xfx
x

F

x
x

f j

j













. (**)

(b) Another extension of theorem 4.3 refers to the number of conditions.
For example, the system









0),,(

0),,(

zyxG

zyxF

defines a vector implicit function of components
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In fact, if z = h(x, y) is an explicit function defined by F = 0, i.e. this
equation becomes F(x, y, h(x, y))  0, then the second equation, which is
G(x, y, h(x, y))  0, yields y = f (x). Finally, g(x) = h(x, f (x)).
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(c) Similarly to (a) and (b) from above, the system
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implicitly defines the functions
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which can be considered a vector implicit function. To be more specific,
we introduce the following:
4.5. Definition. Let us consider a system of equations
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where the functions Fi : DR are defined on the same open set D  Rp+m

for all i = 1, .., m. Let also ARp be a set consisting of those x = (x1 ,…, xp),

for which there exists y = (y1 ,…, ym)Rm such that (x, y)D. A set of

functions {fk : AR; k = 1, …, m} is called solution of the given system of

equations on A iff for all xA and i = 1, …, n , we have
Fi (x1, …, xp ; f1(x), …, fm(x)) = 0 .

If the set of solutions is unique, we say f1 , …, fm are implicit functions
defined by the given system relative to the variables (y1 , ..., ym).

For brevity, instead of several functions F1 ,…, Fm we may speak of a
single vector function F, of components F1 ,…, Fm . Similarly, the functions
f1, ..., fm define a vector function f. Using these notations, we may extend
the implicit function theorem 4.3 to vector functions, namely:
4.6. Theorem. If at (x0 , y0) D (in the above terminology) we have:
1) F(x0 , y0) = 0 (i.e. Fi (x0 , y0 ) = 0 for all i = 1, …, m),
2) F is of class C1 on a neighborhood W of (x0 , y0), and

3)  = 0),(
),...,(

),...,(
00

1

1 yx
yyD

FFD

m

m , then:

(a) There exists U V (x0) and a unique solution f : U V of the equation
F = 0, such that f (x0) = y0 ,

(b) f 1
mR

C (U), and for all i = 1, …, m and j = 1, …, p, we have
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(***)

(c) If F k
mR

C (W) for some k N*, then f k
mR

C (U) too.
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Proof. (a) We reason by mathematical induction over m. The verification
step is contained in Theorem 4.3, where m = 1. In the second step we have
to show that for every m N, from the hypothesis of validity up to m – 1 it

follows the validity for m.
Because   0, there exists at least one non-null minor of order m – 1.

For simplicity, let it be

0),(
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),...,(
00

11

11 


 yx
yyD

FFD

m

m .

Since the theorem is supposed to be true for m – 1, the system
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defines m – 1 implicit functions y1 ,…, ym – 1 in a neighborhood of (x0 , y0 ).

More exactly, if we note x0 = ),...,( 00
1 pxx , and y0 = ),...,( 00

1 myy , then there

exist U /
V (x0), V / = //

2
/

1 ... mVVV  V (y0), and m – 1 functions
/

1
//

11 :),( VVUyxhy mm 
/

2
//

22 :),( VVUyxhy mm 

. . .
/

1
//

11 :),(   mmmmm VVUyxhy

such that 00
0 ),( kmk yyxh  for all 1,1  mk . In addition, we have

0)),,(),...,,(,( 11  mmmmi yyxhyxhxF , 1,1  mi ,

at each (x, ym ) //
mVU  . Because h1 , …, hm –1 are functions of class C1

on the neighborhood //
mVU  , the initial system

0),,...,;( 11  mmi yyyxF , mi ,1 ,

is equivalent (at least on //
2

/
1

/ ... mVVVU  ) to the system
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Now, let us consider a helping function  :  //
mVU R, of values

 (x, ym ) = )),,(),...,,(,( 11 mmmmm yyxhyxhxF  .

It is easy to see that  satisfies conditions 1) and 2) of theorem 4.3, so that

 (x, ym ) = 0 implicitly defines ym in a neighborhood of ),( 0
0 myx .
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Hypothesis 3) of theorem 4.3 is also fulfilled, i.e. 0),( 0
0 
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. In

fact, deriving in respect to ym , we obtain the following system of conditions
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where the derivatives of F1 , …, Fm are evaluated at (x0 , y0 ). The value of

the Jacobian ),(
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00
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m is preserved if to its last column we add

(column 1) ),( 0
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1
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According to the above formulas, we obtain
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Consequently 0),( 0
0 
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, hence theorem 4.3 is working. This means

that there exist a neighborhood ),( 0
0

0
mm yxVU V and a function

0: mm VUf 
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such that 0))(,( xfx m on U, and 0
0 )( mm yxf  . In addition, function f

belongs to the class )(1 URC , and its derivative is given by (*).

It is easy to see that the initial system (Fi = 0, mi ,1 ) is equivalent to
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on U x V, where )(... 0
0/

1
/

2
/

1 yVVVVV mm V  .

If we note f1 (x) = h1 (x, fm (x)), …, fm –1 (x) = hm –1 (x, fm (x)), then we may
conclude that f = (f1 , …, fm –1, fm ) : U V is the searched implicit function,
i.e. assertion (a) of the theorem is proved.

(b) If we derive relative to xj in the equations Fi (x, f1 (x), …, fm (x)) = 0,

where mi ,1 , then we obtain the system

0...1
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The Cramer’s rule furnishes the entire set of derivatives
j

k

x

f




, as in (***).

(c) We reason by induction, like in the proof of theorem 4.3. }

4.7. Remarks. (a) The above theorems assure the existence of the implicit
functions, but do not offer methods to construct them in practice.
(b) The formulas (*), (**) and (***) are useful in calculating the (partial)
derivatives of implicit functions, especially when the explicit expressions
are not known. In particular, the formulas (***) follow by Cramer’s rule.
(c) The study of the extreme points of implicit functions may be done
without getting their explicit form. For example, if y = f (x) is implicitly
defined by F(x, y) = 0, where x, yR, the stationary points (where y / = 0)

are given by the system:
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Sufficient conditions are expressed by the sign of y//, which may be
obtained by deriving in (*) one more time.
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Similarly, if the function z = f (x, y) is implicitly defined by F(x, y, z) = 0,
where x, y, z R, then the stationary points are the solutions of the system
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The decision about extremes results from the study of sign (Δ), where
22

2

2

2

2






























yx

z

y

z

x

z
.

To obtain the second order partial derivatives of z, which occur in , we
do another derivation in formulas (***).

There are three types of problems based on the implicit function theorems
like 4.3 and 4.6 from above, namely the conditional extrema, the change of
coordinates, and the functional dependence. In the sequel we analyze these
problems, in the mentioned order.

We start with a geometric example, which illustrates the strong practical
nature of the conditional extrema theory.
4.8. Example. Let us find the point P(x0 , y0 , z0)R3, which belongs to the

plane of equation x + y + z = 1, and has the smallest distance to the origin.
To solve the problem, we have to find the minimum of the function

f (x, y, z) = 222 zyx 

under the condition x + y + z = 1. Of course, we may reduce this problem
to a free extremum one if we replace z = 1 – x – y in f and we study the
forthcoming function of two variables. This method works in the present
case because we can make the given restriction explicit. Therefore, we are
interested in more general methods, which concerns implicit restrictions.

Generally speaking, the problem may involve more than one restriction.
This is the case when we are looking for a point P, which has the smallest
distance to the origin, and belongs to the straight line









.02

1

zyx

zyx

In this case, again, we can express y and z as functions of x, and reduce the
problem to that of a free minimum of a function of a single real variable x.



Chapter IV. Differentiability

232

It is useful to remark that the number of conditions equals the number of
implicit functions, and it cannot exceed the total number of variables. More
exactly, we have to specify the terminology:
4.9. Definition. Let DRp+m be an open set, and let f :D R be a function

of class C1 on D (also called objective function). The equations
gi (x1 ,…, xp ; y1 ,…,ym ) = 0, i = 1, ..., m

where gi :D R are functions of class C1 on D for all i = 1, ..., m, are

called conditions (restrictions or coupling equations). For brevity, we note
x = (x1 ,…, xp ) , y = (y1 ,…, ym ) and

M = {(x, y)D : gi (x, y) = 0 for all i = 1, ..., m} .
The point (x0 , y0 )M is called local extremum of f under the conditions

gi = 0 iff there exists a neighborhood V of (x0 , y0 ), VD such that the
increment f (x, y) – f (x0 , y0 ) has a constant sign on V M.

The following theorem reduces the problem of searching a conditioned
extremum to the similar problem without conditions, which is frequently
called unconditional (or free) extremum problem. It is easy to recognize the
idea suggested by the above examples, of making the restrictions explicit.
The explicit restrictions will work locally, in accordance to the implicit
function theorems.
4.10. Theorem. (Lagrange) Let (x0 , y0 )M be a conditioned extremum of f
as in the above definition. If

0),(
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00

1

1 yx
yyD

ggD

m

m ,

then there exists a set of numbers λ1, …, λm R, such that the same (x0 , y0 )

is stationary point of the function
F = f + λ1 g1 + … + λm gm .

Proof. According to the implicit function theorem 4.6. from above, the
system of conditions gi = 0, i = 1, …, m, locally defines m implicit
functions yi = fi (x), i = 1, …, m, of class C1, such that fi (x0 ) = yi

0 holds for
all i = 1, …, m. By deriving the relations gi (x, f1 (x), …, fm(x)) = 0 (on M),
where i = 1, …, m, relative to xj , j = 1, …, p, we obtain:
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On the other hand x0 is a (free) extremum for f (x, f1(x), …, fm(x)), hence it

is stationary point too, i.e. 0)( 0 
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for all j = 1, …, p. In other words,

for each fixed j{1, …, p}, the vector






















)(),...,(,1 00

1 x
x

f
x

x

f

j

m

j

)...,,,( 10

.

m

not
uuu



§ IV.4. Implicit functions

233

represents a non-trivial solution of the homogeneous linear system of m+1
equations:
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Consequently, for all j = 1, …, p, we have
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This fact implies the existence of a linear combination between the lines of
this determinant, that is, there exist λ1, …, λm R such that
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Because λ1, …, λm are uniquely determined by the above last m equations,
it follows that they make valid the former equation too, for all j = 1, …, p.
In other words, this means that (x0 , y0 ) is a stationary (non-conditional)
point for F = f + λ1 g1 +  … + λm gm . }

4.11. Remarks. a) In practice, the above theorem is used in the sense that
we primarily have to find the solutions x1

0, …, xp
0; y1

0,…,ym
0 ; λ1

0, …, λm
0

of the system
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In particular, it gives the stationary points of f under the given conditions.
The selection of the points of real extremum results from the study of the

sign of ),(
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00 yxFd , where we take into account that dxj , j = 1, …, p, and

dyk, k = 1, …, m , are related by dgi (x0 , y0 ) = 0, i = 1, …, m, i.e.

.1,0...... 1
1

1
1

,...,midy
y

g
dy

y

g
dx

x

g
dx

x

g
m

m

ii
p

p

ii 





















Chapter IV. Differentiability

234

These facts are based on the remark that under the restrictions gi (x, y) = 0,
we have F = f , F = f, etc.
b) The above method is useless in the case when the points of extremum
belong to the boundary of the domain D, of the objective function f

(usually, D is compact). In principle, we may treat this case as a problem
of conditional extremum, by adding new restrictions, namely the equations
of the boundary.

Another important application of the implicit function theorem concerns
the invertible functions of several variables. Roughly speaking, to invert
the function f : ARm, where ARp, means to solve the vectorial equation

f (x) – y = mR0 , or, more exactly, the system
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If the differentiability is allowed, and p = m, then we naturally try to
realize the inversion by the help of theorem 4.6. In this respect, we present
the following definition, which introduces the specific terminology:
4.12. Definition. Let A be an open subset of Rp, where p1. Each function

T : ARp is called transformation of A. If T 1
pR

C (A), then we call it

smooth transformation of A. If T : AB  Rp is a 1:1 (one to one) smooth

transformation of A onto B, and T – 1 is smooth on B, then it is named
diffeomorphism between A and B .
4.13. Theorem. (Local inversion) Let T : ARp , where ARp is an open

set, be a smooth transformation of A, and let x0A be fixed. If T, through its
components f1 , …, fp , satisfies the condition
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1
x

xxD

ffD

p

p
,

then there exist some neighborhoods U V (x0 ) and VV (T(x0)), such that
T is a diffeomorphism between U and V.
Proof. It is sufficient to apply theorem 4.6 to the equation T (x) – y = mR0 .

The resulting implicit function obviously is T – 1. Formula (***) shows that
T – 1 is a smooth transformation of V . }

4.14. Corollary. In the conditions of the above theorem, if  1, …,  p are
the components of T – 1, then

1
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Proof. We have  TT 1 , where  is the identity on U, and )( 0xJ = 1.

According to formula (*) in theorem IV.3.6, the Jacobi matrixes are related
by the equality

)())(()( 000 11 xxTx TTTT JJJ    .

It remains to take the determinants in this formula. }

The above inversion theorem has a strong local character, which persists
in the case when the Jacobi matrix is different from zero on the entire A. It
is frequent in practice, as the following examples show:
4.15. Examples a) When we are drawing flat maps from a circle or sphere,
we usually realize projections like T in Fig.IV.4.1 from below. As a matter
of fact, T projects points X of a half-circle only, namely which correspond
to angles x )2/,2/(   at the center C. The action of T is completely

described by function f :  )2/,2/(  R, of values f (x) = l tg x = T(X).

Because of the simple form of f, we prefer to consider it as projection of
C on R, instead of T . In addition, we easily obtain the derivative

x
xf

2
/

cos
)(

l
 .

X

0

C x

/2
C

T

T X( )
f

= ( )f x

R

0

/2

x
(

)

Fig. IV.4.1

l

To conclude, we may consider that f is a local diffeomorphism between C

and R. Anyway there is no global diffeomorphism between them.

b) When we pass from Cartesian to polar coordinates in R2, then we realize

a transformation T : R2 \ (0, 0) R*
+ x [0, 2), as in Fig.IV.4.2.

The transformation of a formula from (x, y) to (,  ) reduces to replace x
and y according to the formulas that define T – 1, namely
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P x,y( )

P ( , ) 





x

y

0 0

2

(
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T

Fig.IV.4.2.

A direct calculus of the Jacobian leads to












cossin

sincos
1TJ ,

hence the local inversion theorem 4.13 is working only if 0 . More than

this, because sin and cos are periodical functions, the formulas of T – 1 carry
the whole set {(, + 2k ): kZ} to the same point (x, y) R2. In other

terms, T can be reversed only from R+ x [0, 2), i.e. rotations around the

origin are not allowed in R2 any more. If we remark that T is discontinuous

at points of *
R (e.g. connectedness is not preserved, see Fig.IV.4.2), then

the only chance for T to realize a diffeomorphism is obtained by removing

the half-line *
R x {0} from its domain of definition. Consequently, T is a

diffeomorphism between the sets A = R2 \ [ R x {0}] and B = *
R x (0, 2).

Because of its role in this construction, the half-line R x {0}, which has

been removed from R2, is called a cut of the plane. Cutting the plane shows

another feature of the local character of the inverse function theorem.

To work with local maps means to construct diffeomorphisms similar to
T in the example a) from above, combine them in some “atlas”, etc. This
technique is specific to the differential geometry of manifolds (see [TK],
[UC], etc.), where the local properties furnished by these maps represent
the “pieces” of the global properties. However, in analysis we are interested
in doing global transformations and changing the coordinates on the entire
space, which usually is the flat Rp . In this sense, we may place analysis

between the geometry on flat spaces, involving continuous transformations,
and that of manifolds, where differentiability holds locally.

To be more rigorous, we have to specify some terms:
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4.16. Definition. If ARp is open, and T : ARp is a diffeomorphism

between A and B = T(A), then T is called change of coordinates (variables).
The variables x1 ,…, xp are called “old” coordinates of x = (x1 ,…, xp)  A,
and the components of T at x, namely f1(x), …, fp(x) are said to be the
“new” coordinates of x . If, in addition
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xxD

ffD

p

p

at each xA, then we say that T is a regular, or non-degenerate change of
coordinates on A.

The differential calculus, where only regular changes of coordinates are
applied, is based on the following simple consequence of theorem 4.6:
4.17. Corollary. Let T be a regular change of coordinates of A, for which
we note T(x) = y = (y1, …, yp). The inverse T –1 = ( 1, …,  p) coincides
with any local inverse of T, and at each xA we have
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Proof. The first assertion is a consequence of the uniqueness of the implicit
function (theorem 4.6). The second property is an immediate consequence
of corollary 4.14 applied at a current point xA. }

In practice, we often have to derive composite functions, which involve
transformations of coordinates.
4.18. Example. Write the Laplace equation in polar coordinates in R2 .

In Cartesian coordinates, the Laplace equation is 0
22

2
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. To

change the variables means to replace u(x, y) = v(, ), where
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,  > 0 and  (0, 2π).

We calculate the partial derivatives of the composed function to obtain
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The system gives the first order partial derivatives of u. By another
derivation of the resulting formulas we obtain the second order partial
derivatives of u, such that the given equation becomes
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The last application of the implicit function theorem, which we analyze in
this section, concerns the functional dependence. Before giving the exact
definition and the theoretical results we consider some examples:
4.19. Examples. (a) The linear dependence of the functions fk : AR,

where k = 1, …, m and ARp is an open set, means that

fm = λ1 f1 + …+ λ m –1 f m –1

for some λ1 ,…, λm–1 R, i.e. for all xA we have

fm(x) = λ1 f1 (x) + … + λm –1 fm –1 (x) .
(b) The three functions f1 , f2 , f3 : R3

R, defined by f1(x, y, z) = x + y + z,

f2(x, y, z) = xy + xz + yz and f3(x, y, z) = x2 + y2 + z2, are connected by the
relation f1

2 – 2f2 – f3 = 0. In other words there exists a function FCR
1(R3),

namely F(u, v, w) = u2 – 2v – w, such that the equality
F(f1 (x, y, z), f2 (x, y, z), f3(x, y, z)) = 0

holds identically on R3. Briefly, we note F(f1, f2, f3) = 0, and we remark that

this dependence is non-linear.
(c) We may formulate the above dependence of f1 , f2 , f3 in explicit form,
e.g. f3 = f1

2 – 2f2 . In this case f3 = G(f1, f2), where G(u, v) = u2 – 2v .
4.20. Definition. We say that the functions f1, …, fm : AR, where ARp

is an open set, are functionally dependent iff there exists a function F of
class C1 in a domain of Rm such that F(f1 (x), …, fm (x)) = 0 at each xA. In

the contrary case we say that f1, …, fm are functionally independent.
Alternatively, if we can put the dependence of one function, say fm , in the

explicit form fm = G(f1, …, fm –1 ), where G is a function of class C1 in a
domain of Rm–1 , then we say that fm functionally depends on f1 ,…, fm–1 .

We start with a sufficient condition for independence:
4.21. Proposition. Let f1, …, fmCR

1(A), where ARp is an open set, and

let mp. If at some x0A we have rank )( 0),...,( 1
x

mffJ = m, then f1 ,…, fm

are functionally independent on a neighborhood of x0 .
Proof. Let us suppose the contrary, i.e. for each VV (x0) there exists a

function F 1
1 mR

C (V) of variables u1 , .., um–1 such that at all xV we have

fm(x) = F(f1 (x), …, fm–1 (x)).
Deriving fm like a composite function, we obtain
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In particular, at x = x0, where fk (x0) = uk
0 for all k = 1, …, m-1, we have
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Because the numbers ),...,( 0
1

0
1 




m

k

uu
u

F
are independent of the values of

xj for all j = 1, 2, …, p, the above relation shows that in the Jacobian matrix
of f1 , …, fm relative to x1 ,…, xp, the last line is a linear combination of the
other lines, hence the rank of this matrix is less than m. }

4.22. Remark. The above proposition shows that if m functions f1 ,…, fm

are functionally dependent on A, then the rank of the corresponding Jacobi
matrix is less than m, which equals the number of functions, at any xA. In
practice, we frequently need information about the converse implication, in
order to establish the existence of a functional dependence (we stressed on
“existence” because finding the concrete dependence F is too complicated).
In this respect we mention the following:
4.23. Theorem. Let us take f1 ,…, fm CR

1(A), where ARp is an open set,

and mp. If there exists x0 A and VV (x0) such that

rank )(),...,( 1
x

mffJ = r < m

holds at all xV, then r of the given functions are functionally independent.
The other m – r functions are functionally dependent on the former ones on
a neighborhood of x0.
Proof. To make a choice, let us suppose that

0)(
),...,(

),...,(
0

1

1  x
xxD

ffD

r

r

According to the above proposition 4.20, the functions f1 ,…, fr are
functionally independent on a neighborhood of x0. So, it remains to show
that the other functions fr+1 , …, fm depend on f1 , …, fr in a neighborhood of
x0. In fact, we may remark that according to theorem 4.6, the system
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has a unique solution
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in a neighborhood of the point (x1
0, …, xp

0 ; y1
0, …, yr

0 ). Consequently, in
such a neighborhood, and for all j = 1, …, r, the following equalities hold:
fj (φ1(xr+1 ,…,xp ; y1 ,…,yr), …, φr (xr+1 ,…,xp; y1,…,yr), xr+1,…,xp) – yj = 0 .

Deriving these relations relative to xk , k = r + 1, …, p, it follows that
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Now, by replacing x1,…,xr in fs , where s > r , we obtain
fs (x1 ,…, xr ; xr+1 , …, xp) =

= fs (φ1(xr+1 ,…, xp ; y1 ,…, yr), …, φr(xr+1 ,…, xp ; y1 ,…, yr), xr+1 , …, xp) =
= Fs (xr+1 , …, xp ; y1 ,…, yr ) .

The assertion of the theorem is proved if we show that Fs does not
depend on xr+1 ,…, xp. Aiming at this result we show that all the derivatives
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vanish on a neighborhood of x0 for all s = r +1, …, m , and k = r +1, …, p.
In fact, the hypothesis concerning the rank of the Jacobian leads to
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where the second form of this determinant is obtained by using (1) and (2).

This means that 0





k

s

x

F
on a neighborhood of x0 . Since 0 , we

obtain 0




k

s

x

F
, i.e. Fs does not depend on xk . Because s = r +1, …, m and

k = r +1, …, p are arbitrary, it follows that
fs (x1 ,…, xp) = Fs (f1(x), …, fr (x)),

i.e. fr+1 , …, fm depend on f1 , …, fr . }

4.24. Corollary. The functions f1 , …, fm : AR, where ARm is an open

set (notice that p = m !) are functionally dependent on A, if and only if

0)(
),...,(

),...,(

1

1 x
xxD

ffD

m

m

at any xA.
No proof is necessary since this assertion is a direct consequence of

proposition 4.20 and theorem 4.22.
In practice, it is also useful to notice that m functions of p variables are

always dependent if m > p.
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PROBLEMS § IV.4.

1. Give geometrical interpretation to the construction realized in the proof
of theorem 4.3, on a figure corresponding to F(x, y) = x2 + y2 – 1
Hint. Compare to example 4.1. Intersect the paraboloid z = x2 + y2 –1 with
planes of equations x = x0 and y = y0.

2. Evaluate the derivatives
dx

dy
and

2

2

dx

yd
, and find the extreme values of

the function y, implicitly defined by (x2 + y2)3 – 3(x2 + y2) + 1 = 0.

Solution. y / = –
y

x
; y // = – (x2 + y2) y – 3 .

3. Find the derivatives
dx

dz
and

dy

dz
, and study the extreme values of the

function z(x, y), which is implicitly defined by x2 – 2y2 + 3z2 – yz + y = 0.
Hint. Either use the formula (**) in remark 4.4, or differentiate the given
equation. From 2x dx – 4y dy + 6z dz – y dz – z dy + dy = 0 we deduce

dy
zy

zy
dx

zy

x
dz

6

41

6

2







 .

4. Find
y

v

x

v

y

u

x

u
















,,, if u + v = x + y and xu + yv = 1.

Hint. Use theorem 4.6. Derive the given equations relative to x

0

1






















x

v
y

x

u
xu

x

v

x

u

to obtain
x

v

x

u








, . Similarly, we calculate

y

v

y

u








, .

Another method is based on the differentials of the given conditions
du + dv = dx + dy

xdu + udx + ydv + vdy = 0 ,
which provide du and dv .

5. Calculate the derivative )2,1(
2






yx

z
, where z(x, y) is implicitly defined

by the equation x2 + 2y2 + 3z3 + xy – z – 9 = 0, and z(1, –2) = 1 .
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6. The system











032

02

333

222

zyx

zyx

implicitly defines y and z as functions of x in a neighborhood of (1, 1, 1).
Calculate y /, z /, y // and z // at x0 = 1 .

7. Show that if f (x, y, z) = 0, then 1














x

z

z

y

y

x
.

Hint. Express the partial derivatives by /
xf , /

yf and /
zf .

8. Show that if F 0, 








z

y

z

x
, then z

y

z
y

x

z
x 









.

9. Find the point of extreme ordinate on the curve x3 + 8y3 – 6xy = 0.

10. Find the extreme values of the function z = z(x, y), implicitly defined by
x2 + y2 + z2 – 4z = 0, and give geometrical interpretation to the result.
Hint. The given condition is the equation of the sphere of center (0, 0, 2).

11. Find the points of extremum for the function f (x, y, z) = xy + xz + yz in
the domain D = {(x, y, z)R3: xyz = 1, x > 0, y > 0, z > 0} .

Hint. The Lagrange function is F(x, y, z) = xy + xz + yz + (xyz – 1). The

system 0,0,0 














z

F

y

F

x

F
, g = 0 gives x = 1, y = 1, z = 1, λ = – 2. The

second order differential is d2F(1, 1, 1) = – (dxdy + dydz + dxdz), but from
dg(1, 1, 1) = 0 we obtain dz = – dx – dy. Replacing dz in d2F, we obtain
d2F(1, 1, 1) = dx2 + dxdy + dy2, which is positively defined. Consequently,
f has a minimum at the point (1, 1, 1).

Another method consists in studying the Hessean of F(x, y, z(x, y)), where

z is explicitly given by g = 0, namely z =
xy

1
.

12. Find the extreme values of the function
f : {x = (x1 , …, xn )Rn : xi0 for all i = 1, …, n, n > 1}  R ,

of values f (x) = nxxx  ...21 , under the restriction x1 + … + xn = S, where

S is a constant. Use the result to deduce that

n
n

n xxx
n

xx



...

...
21

1 .
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Hint. Use the Lagrange function F(x) = nxxx  ...21 – (x1 + … + xn – S)

to find (see the above problem) xk =
n

S
for all k = 1, …, n and

1











n

n

S
 .

Further, evaluate the second order differential

   























22

2

1

2

)(
2 2

0 ii

nn

ji
ji

n

x dxdx
n

S
dxdx

n

S
fd

and because the restriction gives  idx = 0, we have 0)(
2

0
xfd .

13. Determine the greatest and the smallest values attained by the explicit
function z = x3 + y3 – 3xy in the region .21,20  yx

Solution. The greatest value z = 13 is attained at the boundary point (2, –1).
The smallest value z = –2 is taken at both (1, 1), which is an internal point,
and at (0, –1), which belongs to the boundary.

14. Seek the extreme points of the function f (x, y) = x2 + y2 – 3x – 2y + 1
on the set K = {(x, y)R2 : x2 + y2

1}.

Hint. The only stationary point is

K








1,

2

3
. Besides the method of

Lagrange function containing the equation of Fr K , a geometric solution is
possible if we remark that f (x, y) involves the Euclidean distance between
(x, y) and the stationary point of f .

15. Let y = y(x) , xR+
*, be a solution of the equation

xcy
dx

dy
bx

dx

yd
ax ln

2

2
2  .

Write the equation of u = u(t), where x = e t, and y(e t ) = u(t).
Hint. Derive u as a composed function, i.e.

2

22

2

2

2

2

,
dt

xd

dx

dy

dt

dx

dx

yd

dt

ud
and

dt

dx

dx

dy

dt

du











It remains to replace y / and y // in the given equation.

16. Let f , g, h CR
1(R). Find a number R such that the functions

u(x, y, z) = f (x + 2y – z)
v(x, y, z) = g(– x – 2y + 2z)
w(x, y, z) = h(x + 3y – 2z)

are functionally dependent, and write the respective dependence. Particular
case: f (t) = t 2 , g(t) = sin t, and h(t) = e t .
Hint. According to corollary 4.24, u, v, w are functionally dependent iff
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0

231

221

12

),,(
),,(

),,( /// 







 hgfzyx
zyxD

wvuD


.

The case when f / = 0 is trivial because it leads to f (t) = c = constant, and
this constant can be replaced in the other functions. If IR be an interval

on which f /
 0, g /

 0, h /
 0, then we can speak of f –1 , g –1, h –1 on f (I),

g(I), and respectively h(I). In this case Δ = 0 is assured by α = 
2

1
, when

between the lines of Δ there exists the relation (geometrical interpretation!)

x + 3y – 2z = (
2

1
x + 2y – z ) –

2

1
(– x – 2y + 2z) .

Because
2

1
x + 2y – z = f –1(u(x, y, z)) and – x – 2y + 2z = g –1(v(x, y, z)), the

above (linear) relation takes the form

w = h(f –1(u ) –
2

1
g –1(v)).

For the particularly mentioned functions, we may work on I = (0,
2


).

The dependence becomes w = exp ( u –
2

1
arc sin v) .

17. Let us consider f, g, h CR
1(R), and define

u(x, y, z) = f (
zy

yx




), v(x, y, z) = g(

xz

zy




), and w(x, y, z) = h(

yx

xz




) .

Show that u, v, w are functionally dependent on a domain DR3, and find

their dependence.
Hint. We may take the domain D = {(x, y, z) R3 : x > y, y > z}, where in

addition f / (
zy

yx




)  0, g / (

xz

zy




)  0, and h / (

yx

xz




)  0. The functional

relation follows from






zy

yx






xz

zy

yx

xz




= 1 .
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§ IV.5. COMPLEX FUNCTIONS

In this section we study the derivable complex functions, which depend
on one complex variable. The basic notions of derivative and differential
obey the general rules of section IV.2. Although they closely resemble the
corresponding notions for a real function, there are many specific features,
on which we stress by using special terms.
5.1. Definition. We say that function f : D C, where DC, is derivable

(in complex sense, or C-derivable) at a point Dz 0 if there exists the limit

)(
)()(

lim 0
/

.

0

0

0

zf
zz

zfzf not

zz







.

If so, this limit is called derivative of f at z0 .
5.2. Examples. 1. The power function, f (z) = zn , where nN*, is derivable

at every z0C, and its derivative resembles that of a real power, namely

1
0

1

1
0

0

0
0

/

00

limlim)( 











  n

n

k

kkn

zz

nn

zz
znzz

zz

zz
zf .

Because the general method of introducing functions is based on power
series, we need rules of deriving in such series (see later IV.5.13).

2. If a real function of a complex variable is derivable at z0 , then f / (z0 ) is
necessarily null. In fact, let us note z = z0 + t , and  = z0 + it , where tR,

and suppose that f is derivable at z0 . Then there exist the limits

)(
~)()(

lim 0

.
0

0
zf

t

zfzf not

t





, and )(

~~)()(
lim 0

0

0
zfi

it

zff

t







.

Because both )(
~~

),(
~

00 zfzf R, and R{i R} = {0}, we obtain f / (z0 ) = 0.

To illustrate the great difference between the real and complex analysis,
we may compare particular real and complex functions. For example, the
real function f : CR, of values f (z) = Re2 (z) + Im2 (z), is derivable at the

point z0 = 0 only, while the function  : R2R, which takes the same

values  (x, y) = x2 + y2 , is differentiable on the whole plane.
3. Because the limit of a complex function reduces to the limits of the

real and imaginary parts, we may express the derivative of a complex
function of one real variable as a derivative of a vector function. In fact, to
each complex function f : IC, where IR, and f (t) = P(t) + i Q(t), there

corresponds a vector function F : IR2, of the same components P and Q,

i.e. F (t) = (P(t), Q(t)). According to the above definition, the derivative of f
is f /(t) = P /(t) + i Q /(t), while F /(t) = (P / (t), Q / (t)).

The geometric interpretations of F / in terms of tangent to a plane curve
remain valid in the case of f /.
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5.3. Remarks. (a) We remind that, differently from the real case, to be the
domain of a function, D shall be an open and connected set. Consequently,

z0 is an interior point of D, hence the evaluation of )( 0
/ zf involves a lot of

directions and “ways” to realize 0zz  (compare to the derivatives from

the left, and from the right, of a function depending on one real variable).
Whenever we intend to put forward the uniqueness of this limit in spite of
its infinitely many reductions to one-directional limits, we may use terms
of more historical connotation, derived from the French monogène (also
met in Romanian). However, to get the exact meaning of the limit in the
above definition, we have to recall its detailed formulation in terms of
neighborhoods, and , etc. (see §§ I.4, III.2, etc.).
(b) The connection between derivability and differentiability of a complex

function is similar to that of real functions. In fact, according to the general
definition of differentiability (see § IV 2), a complex function f : D C,

where DC, is differentiable at a point Dz 0 if there exists a linear (and

continuous) function CC:
0zL such that

0
)()()(

lim 000

0




 h

hLzfhzf z

h
.

Similarly to the case of a real function, the general form of such a linear
function is hchLz )(

0
, for some c C. Consequently, f is differentiable

at z0 if and only if it is derivable at this point, and c = f / (z0 ). For historic

reasons we may note
00 zz dfL  , hzfhdfz )()( 0

/
0

 , dzfdf / , etc. as for

real functions of a real variable.
(c) The applications of the differential to the approximation theory are

also similar to the real case. More exactly, we obtain an approximate value
of )( 0 hzf  if we write the differentiability in the form

 )()( 00 zfhzf hzf )( 0
/ .

5.4. Geometric interpretation. If the function f : D C, where DC, is

derivable at the point Dz 0 , and 0)( 0
/ zf , then locally (i.e. in ‘small”

neighborhoods of z0 ) it realizes a dilation of factor )( 0
/ zf and a rotation

of angle arg )( 0
/ zf . To justify this interpretation, let us note the increments

zh  and Zzfhzf  )()( 00 , and write the approximation rule from

above in the form zzfZ  )( 0
/ . The local character of this property

means that for every imposed error, we can find a radius 0 , such that 

be accepted as equality whenever z . If so, then zzfZ  )( 0
/

and zzfZ  argargarg )( 0
/ . It remains to interpret  and arg.
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The derivative of f has strong connections with the partial derivatives of
the real and imaginary parts P = Re f , and Q = Im f , first of all:
5.5. Theorem. If the function f : D C, where DC, is derivable at the

point Diyxz  000 , then P = Re f and Q = Im f , are derivable at the

point Dyx ),( 00 , now considered in R2 , and the following relations hold
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0000

0000

yx
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Q
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(C-R)

The abbreviation (C-R) comes from Cauchy and Riemann, who have
discovered and used these equations for the first time.
Proof. We may realize the limit from definition 5.1 in two particular ways,

namely I. xzh
not


.

, and II. yizh
not


.

(as in the figure below).

I

II

z0

0

z0

z0

+ x

+ yi 

D

x z= Re

y z= Im

Fig. IV.5.1.

In the first case, the quotient
z
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while in the second one it becomes

yi

yxQyyxQ
i
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yxPyyxP








 ),(),(),(),( 00000000 .

Taking 0h , the existence of )( 0
/ zf implies the existence of the partial

derivatives of P and Q at (x0 , y0 ). In addition, the equality of the two

expressions of )( 0
/ zf , namely

),(),(),(),( 00000000 yx
y

P
iyx

y

Q
yx

x

Q
iyx

x

P




















proves the Cauchy-Riemann relations. }
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5.6. Corollary. If the function f = P + i Q : D C, is derivable at the point

Diyxz  000 C, then its derivative is calculable by the formulas

)( 0
/ zf = ),(),(),(),( 00000000 yx
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=
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.

These formulas appear in the proof of the above theorem.
Simple examples show that the C-R conditions do not imply derivability:

5.7. Example. Let us define f : C C by f (z) = (1 + i)  (z), where
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ImRe


The Cauchy-Riemann conditions hold at z0 = 0 because the real and
imaginary parts of f constantly vanish on the axes. However, if we take the
increments along different directions of equations y = m x, then we see
that f is not derivable at the origin.

The following theorem gives an answer to the question “what should we
add to the Cauchy-Riemann conditions to assure derivability?”
5.8. Theorem. Let us consider a function f = P + i Q : D C, and a point

Diyxz  000 C. If P and Q are differentiable at ),( 00 yx and satisfy

the Cauchy-Riemann conditions, then f is derivable at z0 .
Proof. We note h = ),( 00 yyxx  , and we express the differentiability of

P and Q by 0)(
0


h

hA and 0)(
0


h

hB , where

h

yyyx
y

P
xxyx

x

P
yxPyxP

hA






















))(,())(,(),(),(

)(
00000000

,

h

yyyx
y

Q
xxyx

x

Q
yxQyxQ

hB






















))(,())(,(),(),(

)(
00000000

.

Using the C-R conditions, we may write A and B by
x

P




and

x

Q




only.

Because 0zzh  , we have
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.

Consequently, f is differentiable at (x0 , y0 ). }
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5.9. Remarks. (i) We may replace the differentiability of P and Q in the
above theorem by harder conditions, e.g. by the continuity of their partial
derivatives (in accordance to theorem IV.3.5).
(ii) Conversely to theorem 5.8, the differentiability of P and Q follows
from the derivability of f . In fact, both A(h) and B(h) are less than
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zz
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x

P
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.

In other terms, the derivability of f is equivalent to the differentiability of
P and Q, plus the Cauchy-Riemann conditions.
(iii) The form of the Cauchy-Riemann conditions, theorem 5.8, and other
results from above, is determined by the use of Cartesian coordinates in the
definition and target planes. More exactly, the correspondence Z = f (z) was

meant as iYXZiyxz
f

 , where X = P(x, y) and Y = Q(x, y). In

practice we sometimes meet representations of z and Z in other coordinates,
especially polar (see problem 5 at the end of the section).

So far we have studied derivability at a single point. Similarly to the real
analysis, this local property can be extended to a global one, which refers to
functions derivable at each point of a domain. The specific notion is:
5.10. Definition. We say that function f : D C, where DC, is globally

derivable on D (or simply derivable on D) iff it is 1:1 (i.e. univalent) and
derivable at each point of D. If so, we note the derivative of f on D by f / .
5.11. Remark. There are plenty of terms and variants of presenting the
global derivability. For example, the 1:1 condition is sometimes omitted,
but tacitly included in the hypothesis that the target space is C. This is the

case of the functions n , Ln, Arcsin, etc., which are not globally derivable

because they a multivalent, i.e. they take values in P (C). Some authors

(frequently including Romanian) use French terms, e.g. “holomorphic” for
global derivability, “meromorphic” for a quotient of “holomorphic”
functions, “entire” for functions derivable on the whole C, etc.

The analytic method of defining functions (see § II.4, etc.) turns out to be
very advantageous in the construction of globally derivable functions. First
of all we need information about the convergence of the derived series. If
we derive term by term in a power series, then we obtain another power
series, hence the problem is to correlate the two radiuses of convergence:

5.12. Lemma. If we derive term by term in a power series  n
nza , then

the derived series, i.e.  1n
nzan , has the same radius of convergence.
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Proof. The essential case is R = 1 , where ),0(lim
.




n
n

n

not
a . We

have to show that n
n

n

not
an


 lim

.
/ there exists, it belongs to ),0(  too,

and R = R /, where R / = /1  . We recall that the superior limit means:

(I) ])[( 0
0 0
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n

n
annthatsuch

N
, and

(II) 





m
m

m
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N0
.

On the other hand, we know that 1lim 


n

n
n , hence

(I / ) ]1)[( 1
0 1







n

n
nnnthatsuch

N
, and

(II / ) we have 1m m at each }1,0{\Nm .

Because the above inequalities are essential for small , we may restrain
)1,0( , and fix a number k such that k 21  . If such an  is

given, then we find n0 from (I), and n1 from (I / ), which correspond to k ,

and we note },{* 10 nnn max . From (I) and (I / ) we deduce that

(I*) ])1)((*)[(
*0

 




 kk
n

n
n

annnthatsuch
N

.

Similarly, multiplying the inequalities from (II) and (II // ), we obtain

(II*) 





m
m

m
amthatsuch

N0
.

The conditions (I*) and (II*) show that  / exists, and  / =  . }

5.13. Theorem. The sum of a power series is globally derivable on the disk
of convergence, and its derivative is obtained by deriving each term.
Proof. The claimed property is qualitative hence it does not depend on the
center of the power series. To simplify the formulas, we suppose that z0 = 0.
Since the case R = 0 is trivial, we take R > 0 (see the figure below).

z

z h+

R

Fig. IV.5.2.

Re z

Im z

z = O0
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Consequently, our object is the function f : D C, where

D = S(0, R) = z{ C : |z| < R}

is the disk of convergence of a power series  n
nza , and 






0

)(
n

n
nzazf .

Because each limit is unique, the values f (z) are uniquely determined, i.e.
function f is univalent. It remains to prove the derivability on D.

If we fix z D, and take h  0 such that Dhz  too, then we may write

  











00

)()(
1)()(

n
nn

n

nn
n hgazhza

hh

zfhzf
,

where 1221
.

)(...)()()(   nnnn
not

n zzhzzhzhzhg . It is easy

to see that the function series  nnga fulfils the hypotheses of a theorem

similar to II.3.13, formulated for complex functions. More exactly, gn are
polynomials, hence continuous functions, the convergence of the series is
uniform in a neighborhood of z. Consequently, the limit 0h preserves

the above equality, where 1

0
)(lim 


 n

n
h

znhg is immediate; the existence

of the limit of the series  nnga shows that f is derivable at z, and













1

1/
.

0
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)()(
lim

n

n
n

def

h
znazf

h

zfhzf
.

The convergence of the derived series follows from Lemma 5.12. }

5.14. Analytic prolongation. An important problem appears relative to the
domain of definition of a function depending on the used method. If we
define it by a power series, then the domain is a disk, but the general form
of the domain of definition is not circular. For example, the function

z
zf




1

1
)(

is defined on D = C \ {1}, while the analytic definition

......1)( 2  nzzzzf

makes sense only in the disk D(0, 1) = }1:{  zz C , where the geometric

series is convergent. For fairness we mention two extreme cases when this
difference disappears (see also problem 6, and other examples), namely:
1) R , since we have accepted to interpret C as a disk, and

2) R , but f is not definable outside the disk D(z0, R).
It is easy to see that some developments of the same function around other

points, different from z0 , may overpass the initial disk of convergence (see
Fig. IV.5.3). In the example from above, if we choose z1 = i /2, then the
development around this point will be a new power series, namely
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This is a geometric series, which is convergent iff
2
5

22
1  iiz , and

has the same values as the former one in the common part of the domains.

z1

2z

3z

4
z

O

Re z

Im z

Fig. IV.5.3.

z0

In general, we may repeat this process of “immediate” prolongation along
various sequences of points {z0 , z1 , z2 , …} to extend the initial function on
larger and larger domains. Without going into details (see specialized
treatises like [CG], [G-S], [SS], etc.), we mention some of the main terms:
5.15. Definition. By element of analytic function we understand a function

f0 , whose values are the sum of a power series, i.e. 





0

00 )()(
n

n
n zzazf .

Its domain of definition, D0 , is the disk of convergence of this series, i.e.
}:{),( 000 RzzzRzSD  C .

The power series of f0 around a point }{\ 001 zDz  is called (immediate)

prolongation of f0 . The greatest domain D, to which f0 can be extended by
all possible repeated prolongations is named domain of analyticity. The
resulting function f : DC, is called analytic function generated by the

element of function f0 .
Each point of D is said to be ordinary (or regular) point of f , while the

points of the frontier of D are named singular.
5.16. Remark. As a result of iterated prolongations, we naturally recover

zones where the function has been previously defined. There is no guaranty
that the new power series takes the same values as the previous ones on
these zones. In practice, we always have to identify the case and distinguish
between univalent and multivalent functions.
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One of the most rigorous ways to avoid the multivalence consists in
considering the domain of analyticity as a manifold with multiple leafs (or

branches). For example, the domain of the function n has n leafs, such

that each turn about the origin (which is the single common point of these
branches) leads us to the “next” leaf. Consequently, whenever we take a
point z C, we have to specify the index k (k = 0, 1, …, n –1) of the leaf

for which z belongs to. The corresponding value is the well known

  




 





n

kz
i

n

kz
zz n

k
n  2arg

sin
2arg

cos)( .

Beside this complicated study of such manifolds (see [SL], [SS], [BN],
etc.), we can solve plenty of practical problems on another way, namely to
transform the multivalent function, which takes values in P (C), into more

univalent functions, which are defined on customary domains in C, and

take unique values. This method is based on the so-called “cuts”:
5.17. Definition. Let f : DP (C), where DC, be a multivalent function.

If the point DD Fr has the property that f is multivalent on arbitrary

neighborhood )(VV , then it is called critical point (or multivalent

singularity) of f .
Each restriction CAf A: , where AD, which is continuous on A (and

self-evidently univalent, since it ranges in C), is named univalent branch

(or univalent determination) of f . If A is obtained by removing a curve C

from D, i.e. A = D \ C, then C is called cut of D.

5.18. Examples. The most frequent multivalent functions are: Arg, n , Ln,

the complex power, and the inverse trigonometric functions. All of them
have the origin of the complex plane as a critical point. The half-line R is

customarily used as a cut of D = C \ {0}. The effect of this cut application

is the elimination of the complete turns about the origin, which avoids the
possibility of passing from one branch to another.

Of course, the combined functions, which involve some of the simple
multivalent examples from above, have more complicated sets of critical
points. For example, the function f : C \ {1, –1}  C, of values

1

1
)(






z

z
Lnzf

has the critical points z1 = 1 and z2 = –1. We may cut along two half-lines
C1 = }1:{}1:{  xxzxxz RR .

The analysis of f shows that another possible cut is C2 = [–1, 1], as well as

many other curves of endpoints –1 and +1 (see problem 7 at the end).
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5.19. Classification of the singular points. During the first stage of the
analysis, we have to establish whether the singular point is

 Isolated (in the set of all singular points), or
 Non-isolated.

Further on, the isolated singular points can be
 Multivalent (i.e. critical), or
 Univalent.

Among univalent isolated singular points we distinguish
 Poles, and
 Essential singularities

More exactly, z0 is a pole of f if there is some pN*, for which there

exists )()(lim 0
0

zfzz p

zz



, and it is finite. The smallest natural number with

this property is called order of the pole z0 . In the contrary case, when there
is no such a number pN*, we say that z0 is an essential singular point.

A singular point can be non-isolated in the following cases:
 It is an accumulation point of a sequence of singular points
 It belongs to a curve consisting of singular points
 It is adherent to a set of singular points, which has a positive area.

For example, z0 = 0 is univalent isolated singular point for the function

z
zf 1)(  , and critical point (i.e. multivalent isolated) for zzg )( . To be

more specific, z0 = 0 is a pole of order p of the functions

pz
z

1
)(1  ,

z
z

psin

1
)(2  , etc.

and essential singularity for the functions
)1exp()(1 zz  , )1sin()(2 zz  , etc.

The same z0 = 0 is non-isolated singular point for the function

z

zh
1sin

1
)(  ,

since it is the limit of the sequence
*

1

N









nn
, which consists of (isolated)

singular points. A line of singular points appears when no prolongation is

available outside the disk of convergence, e.g. 


0

!

n

nz in problem 6. The

examples of domains with positive area, which consist of singular points,
are much more complicated, and we will skip this topic here; however, we
mention that a remarkable contribution in this field is due to the Romanian
mathematician Dumitru Pompeiu (about 1905, see [SS], [CG], etc).

The above classification includes the point at infinity.
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Another major topic in the theory of the derivable functions concerns the
properties of their real and imaginary parts. We obtain simpler formulation
of the main theorem if we ask D to be particularly connected:
5.20. Definition. We say that the domain DR2 is connected by segments

if there exists a point DyxM  ),( 000 such that

[(x0 , y0 ), (x , y0 )]  [(x , y0 ), (x , y)]  D
holds for all DyxM  ),( , where [ . , . ] denotes a line segment.

Alternatively, we may refer to the dual broken line
[(x0 , y0 ), (x0 , y)]  [(x0 , y), (x , y)],

or to concatenations of such curves.
A comparison to the line integral is advisable (see later § VI.3, where we

replace the broken lines by a single segment [M0 , M], and we say that D is
a star-like domain).
5.21. Theorem. Let f = P + i Q : D C be a function, for which the real

and imaginary parts have continuous partial derivatives of the second order,

i.e. )(, 2 DCQP R . If f = P + i Q : D C is derivable on DC, then P and

Q are harmonic functions on this domain, i.e. they fulfill the Laplace
equation P = 0, Q = 0, at each point Dyx ),( .

Conversely, if the function P : D R is harmonic on the domain DR2,

which is connected by segments, then there exists a function f : DC,

derivable in the complex sense, such that P = Re f .
A similar property holds for Q .

Proof. If f is derivable, then according to Theorem 5.5, P and Q satisfy the

Cauchy-Riemann conditions. Since )(, 2 DCQP R , we may derive one

more time in these relations, and we obtain

),(),(

),(),(

2

2

2

2

2

2

yx
xy

Q
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y
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yx
yx

Q
yx

x

P



















at each Dyx ),( . The continuity of the mixed derivatives of Q assures

their equality (see the Schwarz’ Theorem IV.3.10), hence

0
2

2

2

2.












y

P

x

P
P

not
.

Appropriate derivations in the C-R conditions lead to Q = 0.

Conversely, let us suppose that a harmonic function )(2 DCP R is given,

and we have to point out a derivable function f , for which P = Re f . What
we need is Q = Im f , hence we start the proof by a constructive step, in
which we claim that the function Q : D R, of values
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Q(x, y) =  
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y
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P

0

),( , (*)

fulfils the requirements. First of all, Q is correctly constructed since D is
connected by segments, and P has continuous partial derivatives. The main
part of the proof refers to the Cauchy-Riemann conditions, so we evaluate
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The other derivative in (*) immediately gives

),(),( yx
x

P
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.

According to theorem IV.5.8, the function f = P + i Q is derivable. }

5.22. Remarks. (i) Slight modifications of the above proof are necessary if
D is connected by other types of segments, or Q is the given function, and
P is the asked one. The key is a good adaptation of the formula (*), which
is explained in Fig.IV.5.4 from below.

0

D

x z= Re

y z= Im

Fig. IV.5.4.
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In addition, we may formally obtain formula (*) by integrating dQ, i.e.
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where the integral is realized along the broken line, and the C-R conditions
are supposed to be valid.
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(ii) Formula (*) is essential in practical problems. It allows finding Q up
to a constant. More exactly, the concrete computation in (*) produces three
types of terms, namely:

 Terms in (x, y), which form Q(x, y);
 Terms in (x0 , y) and (x, y0 ), which must disappear;
 Terms in (x0 , y0 ), which form Q(x0 , y0 ) = constant.

We stress on the fact that the terms in (x0 , y) and (x, y0 ) must disappear,
and the final result in (*) takes the form

 




x

x
dtyt

y

P

0

),( 0 +  

y

y
dssx

x

P

0

),( = Q(x, y) – Q(x0 , y0 ) .

In other terms, Q (and implicitly f ) are determined up to a constant, which
is sometimes established using a condition of the form f (z0 ) = Z0 .

(iii) In more complicated problems, instead of P (respectively Q) we have
a relation satisfied by these functions. In this case it is very useful to know
many particular functions (see problems 8, 9, etc.).

(iv) In a typical problem, e.g. P is given and we find Q, we obtain the
solution, i.e. function f , in the form P(x, y) + i Q(x, y). Whenever we have
to write the answer as f (z), the following formal rule is recommended

f (z) = P(z, 0) + i Q(z, 0).
(v) Formula (*) and the other results concerning the properties of P and Q

in a derivable function f = P + i Q strongly depend on the chosen type of
coordinates, namely Cartesian. Whenever a practical problem asks, we may
reconsider the same topic in other coordinates, and put the main ideas from
above in an appropriate formalism.

The geometric interpretation of the derivability at a point can be naturally
extended to the global derivability, in terms of particular transformations.
5.23. Definition. We say that the function T : D R2 , where DR2, is a

conformal transformation of D if it preserves the angles.
More exactly, the notion of angle refers to smooth curves, respectively to

the tangent vectors to such curves. To transform smooth curves into smooth

ones, we tacitly use the hypothesis T )(1
2 DCR . The specific property is to

leave the size of the angle between corresponding curves unchanged.
We recall that the complex functions represent plane transformations.

5.24. Examples. We represent the elementary geometric transformations of
the plane by the following complex functions:

 Z = z + b represents a translation of vector b, where bC ;

 Z = z ie is a rotation of angle , where [0, 2) ;
 Z = r z is a dilation / contraction of center 0 and factor r > 0 ;
 Z = z means symmetry relative to the real axis ;
 zZ 1 is an inversion relative to the unit circle.
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By composing such transformations we obtain the linear complex function
Z = a z + b,

where a, b C , 0a , and the circular (or homographic) function

dcz

baz
Z




 ,

where bcad  , and cdz  if 0c .

The derivability of f makes it conformal transformation in the plane:
5.25. Theorem. Let f : DC be a derivable function on the domain DC.

If 0)(/ zf at each Dz , then f realizes a conformal transformation of

this domain.
Proof. Let and  be two smooth curves in D, which are concurrent in
the point z = x + iy. The angle  between these curves is defined by

cos  = < 1t


, 2t


> ,

where 1t


and 2t


are the unit tangent vectors to the curves and .

Since f is a derivable function, the images 1 = f () and 2 = f () are
also smooth curves (see Fig.IV.5.5.), which form the angle .

The assertion of the theorem reduces to the equality , for arbitrary

and in D. The proof is based on the relation zzfZ  )( 0
/ , which

was already used to obtain the geometric interpretation 5.4 of the local
action of a derivable function. More exactly, we recall that

zzfZ  argargarg )(/ ,

where “ ” can be successfully replaced by “ = “ in small neighborhoods of
the point z . If we take the increment z along , then 1zarg , and for

the corresponding image 1 , 1Zarg . Consequently, we obtain

1
/

1 )(   zfarg ,

with equality for small increments of z.
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Similarly, along we have

2
/

2 )(   zfarg .

The subtraction of these relations leads to the desired equality, because
, and . }

5.26. Remarks. Besides this theorem, in practice we frequently have to use
other results concerning the conformal mappings. Without going into the
details of the proof, we mention several theorem of this type:

 (The converse of Theorem 5.25) Each conformal mapping of a plane
domain is realized by a derivable complex function f , or by f .

 (The principle of correspondent frontiers) Let the domain D C be

simply connected, i.e. each closed curve from D has its interior in D,
and let  = Fr D be a piecewise smooth curve. Let also f : DC be a

derivable function on D, which is continuous on DD  . If  and

 = f () are traced in the same sense, then f realizes a conformal
correspondence between D and the interior of , noted ().

 (Riemann-Carathéodory theorem) Every simply connected domain,
whose frontier has at least two points, allows a conformal mapping
on the unit disk.

5.27. Applications. The derivable complex functions are frequently
used in Mathematical Physics (see [KE], [HD], etc.). For example, since
P = Re f is a harmonic function, it is appropriate to describe a potential,
e.g. electrostatic. The complex potential f = P + i Q is often preferred,
because of its technical and theoretical advantages. In particular, Q is
physically meaningful too, as a consequence of the orthogonality of the
equipotential lines P = constant, and the lines of force Q = constant.

Other applications concern the heat conduction and the fluid flow. For
example, we may obtain wing profiles from disks if we use conformal
transformation like the Jukowski’s function

zazZ 2 .

The advantage is that the streamlines around a disk are very simple,
and the conformal transformation allows us to find out the streamlines
around other profiles.
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PROBLEMS § IV.5

1. Formulate and prove the rules of deriving the sum, product, quotient, and
composition of complex functions of a complex variable.
Hint. The rules for real functions of a real variable remain valid.

2. Show that the functions exp, Ln, sin, cos, sinh, and cosh are derivable at
each point of their domain of definition, and find the derivatives.
Hint. Identify the real and imaginary parts, and study the continuity of their
partial derivatives (Theorem 5.8). Use either one formula of Corollary 5.6,
and express the derivatives as in the real case.

3. Show that the function f : C C, of values
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fulfils the C-R conditions at z0 = 0, but it is not derivable at this point.
Hint. Because P = Re f and Q = Im f have the values
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Study the derivatives on directions of equations y = m x .

4. Let f = P + i Q : D C be a function for which P and Q are partially

derivable at a point (x0 , y0 ) D. Show that the C-R conditions hold if and

only if 0),( 00 



yx

z

f
. In particular, study the function f (z) = z .

Hint. f depends on z via x and y, according to the formulas

)()(
2
1

2
1 zzyandzzx

i
 .

In the particular case, f is nowhere derivable.

5. Write the C-R conditions for a function Z = f (z) in the cases:
1. z is expressed in polar coordinates, and Z in Cartesian coordinates;
2. z is expressed in Cartesian coordinates, and Z in polar coordinates;
3. Both z and Z are expressed in polar coordinates.
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Hint. Change the coordinates by deriving composite functions in the C-R
conditions in Cartesian coordinates.

1. If iterz  and iYXZ  , where ),( trX P and ),( trY Q , then

trr 






 QP 1
and

trr 






 PQ 1
;

2. If iyxz  and ),(),( yxiTeyxRZ  , then the C-R conditions become

y

T
R

x

R









and

x

T

y

R









;

3. If iterz  and ),(),( trietrZ TR , then the C-R conditions take the form

trr 






 TRR
and

r
r

t 






 T
R

R
.

6. Find the domain of definition of the function f , of values







0
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nzzf ,

and show that no analytic prolongation is possible.
Hint. The power series has R = 1, hence the domain of f is the disk D(0, 1).
The impossibility to prolong f outside this disk follows from the property of
this function to take high values when we get close to the circumference. In

fact, if we take )sin(cos  irz  , where  2
q

p
 , p, qN*, and qp  ,

then we may use q to decompose the sum and to obtain
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Since r <1, we have 1!!  nn rz for all n < q, hence qz
q

n

n 




1

0

! . On the

other hand, for qn  we obtain  !! nn rz R+ , hence 









qn

n

qn

n rz !! . The

last sum takes arbitrarily large values if r is close enough to 1, and so does

f too, according to the inequality qrzf
qn

n  




!)( . Finally, because

};,;2:sincos{ qpqpiz
q

p
 N

is a dense set in the circumference of the unit circle, this property of f also
holds for “irrational directions”  2 , with Q\)1,0[ .
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7. Find the critical points and indicate cuts for the functions:

(a) 3 1z ; (b) Ln (z2 +1); (c) 12 



z

iz

iz
Ln ; (d) Ln (z – 1) + Arcsin z

Hint. Identify the real and imaginary parts of these functions, where the
index of the branches is visible. For the logarithmic part in (c), we may
include [– i, i] as a part of the cut (compare to Examples IV.5.18).

8. Find the derivable function f = P + i Q, if we know that:

(i) P(x, y) = yex cos , and f (0) = 1;

(ii) P(x, y) = 3xy 2 – x 3, and f (i) = 0;

(iii) P(x, y) =
22 yx

x


;

(iv) Q(x, y) = yex cos , and f (0) = 1;

(v) Q(x, y) = 1 – 3x 2 y + y 3, and f (0) = i ;

(vi) Q(x, y) =
22 yx

y




;

(vii) P 2 (x, y) – Q 2 (x, y) = sin x cosh y.
Hint. Use Theorem 5.21 and Remark 5. 22. In the case (vii), recognize that
sin x cosh y = Re (sin z), and P 2 – Q 2 = Re f 2 . The resulting function f is
multi-valued, hence a cut of the plane is advisable.

9. Find the derivable function f = P + i Q, for which f (1) = e, and

22
sin),(cos),(

yx

ex
yyxQyyxP

x


 .

Hint. Remark that )sin(cos yiyee xz   , and

   )(sin),(cos),( zfeyyxQyyxPe zx   Re .

Our previous experience, e.g. problem 8 from above, furnishes the relation











 zyx

x 1
22

Re , hence ze
z

zf
1

)(  .

10. Show that the circular mappings preserve the family C , of straight
lines and circles in a plane. What circles are mapped into circles?
Hint. The general equation of a curve  C is

0)( 22  DCyBxyxA .

The elementary transformations contained in a homographic map preserve
the form of this equation. In particular, the formulas of an inversion are

22 yx

x
X


 ,

22 yx

y
Y


 .
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11. Show that we can determine a circular transformation by three pairs of
correspondent points (in spite of its dependence on four parameters). Using
this fact, find homographic transformations for which:

(a) The interior of the unit circle in transformed into }2:{  iZZ C ;

(b) The upper half-plane is transformed into the unit circle;
(c) The (open) first quadrant is applied onto }0,1:{  ZZZ ImC .

Hint. At least one of the parameters a, b, c, d differs from zero, so that we
may simplify and determine the remaining three parameters from three
independent conditions. In the concrete cases, take three pairs of points on
the corresponding frontiers, and respect the orientation (correlate to 5.26, or
chose some proof-points in the transformed domains).

12. Find out the images of the circle C (0, r) through the functions:

(a)
z

z
Z  ; (b) 2zZ  ; (c)

z

a
zZ

2

 , a R+ (Jukowski).

Hint. Replace z = r (cos + i sin ),  )2,0[  . The sought for images are:

(a) The unit circle traced twice; (b) The circle of radius r 2, traced twice; (c)
Either ellipse or hyperbola, depending on r and a.

13. Show that the function Z = sin z realizes a conformal transformation of
the domain D = {z C : –  < Re z < , Im z > 0} into the complex plane C,

cut along the line segment [–1, 1] and the negative imaginary axis.
Hint. Write sin z = sin x cosh y + i sinh y cos x , and show that the function
sin establishes a 1:1 (i.e. bijective) correspondence between D and

C \ {[–1, 1] iR – }.

Identify three linear parts in the Fr D, and find their images through this
function.

14. A singular point z0 D, of the function f : D C, is said to be apparent

(illusory or eliminable) if f allows a derivable prolongation to this point.
Show that z0 = 0 is an apparent singular point of the functions:

(a)
z

zsin
; (b)

22

2cos1

z

z
; (c)

1ze

z
.

and specify the Taylor series around z0 of the corresponding derivable
prolongations.
Hint. Use the power series of sin, cos, and exp. In the third case we have to
evaluate the coefficients of the quotient series.
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Index

A
Abel 79, 87
absorption 1
alef (naught) 15
algebra

- Boolean 2
- Clifford 22

approximation
- best 60
- linear 183
- order 68
- successive 68
- two variables 199

Archimedes 136
associativity 1
axiom

- Cantor’s 18
- Hausdorff 146
- of choice 10
- separation 57

B
Banach 65
base

- algebraic (Hamel) 32
- canonical 32
- of a filter 4

Boole 2
bound(ed)

- equally 98
- lower / upper 6
- set 139

Buniakowski 53

C
Cantor 18, 136
Cauchy 53, 78, 80, 82, 118

- Cauchy-Riemann 247

Cayley 42
Cesàro 70, 86, 88
chain 7
complement 1
contraction 68
commutativity 1
composition

- internal (of operators) 36
- of two functions 8
- of two relations 5

combination
- convex 31
- linear 31
- null (linear) 32

compact
- - compact 157
- one point compaction 78
- sequentially 152, 157

completion
- in order 7
- metric 65

cone 7
conjunction (fundamental) 3
continuum

- hypothesis 16
- power 15
- structure of 153

convergent (-ce) / divergent 18
- absolute 80, 85
- almost uniform 96
- faster / slower 90
- net 61
- point-wise 94
- quasi-uniform 101
- radius of 123
- semi- (conditionally) 85
- sequence 18, 61, 65, 94
- square 86
- uniform 95
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coordinates
- Cartesian 20, 202, 235,

237, 249
- polar 20, 235, 237
- change of 237

correspondence 8
cover (open, sub-) 151
curve 24
cut

- in C 253

- of a relation 5
- of the plane 236

D
D’Alembert 82
Darboux 140
dependence

- functional 238
- linear 32, 238

derivative / derivable
- complex 245
- globally 249
- higher order 206
- in a direction 201
- partial 196, 204
- two times 206

diagonal 5
diffeomorphism 234
differential / differentiable

- f : A R, A R 184

- f in normed spaces 188
- Fréchet 188
- Gateaux 188
- on a set 185, 189
- second order 193
- two times 193

difference (of sets) 1
digit 14
dimension 33
distance

- metric 56
- uniform 73

distributivity 1

domain
- complex 25
- of convergence 94
- of definition 8, 251

duality
- algebraic 35
- topological 165

Duhamel 83, 87

E
element

- best approximation 60
- greatest 6
- maximal 7
- minimal 7
- smallest 6
- unit 36

embedding (canonical) 74, 147
equation

- characteristic 45
- explicit / implicit 27, 224
- of a curve 24

equivalence (class of) 5
Euler

- formulas 126, 134
- number 136

extremum
- free / conditional 232
- local 214, 232

F
Fermat 214
field

- scalar 196, 201
- vector (function) 198

filter
- elementary 12
- free / tied / ultra- 12
- proper / improper 4

form
- definite (semi-) 177
- in Rn 174

- indefinite 177
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- polar 174
- positive / negative 177
- quadratic 174, 215

function
- 1:1 / one to many 8
- algebraic 125, 142
- analytic 125, 252
- bijective 8
- characteristic 9
- choice 10
- circular (homographic)

258
- component 71
- continuous 137, 144
- Darboux 140
- harmonic 255
- Hermitian 175
- implicit 224, 227
- injective 8
- multivalued (-valent) 8
- objective 232
- power 245
- quadratic 174
- rational 142
- real / complex 24
- surjective 8
- symmetric 174
- transcendental 125
- u-continuous 139, 156
- working 3

functional
- bilinear 169
- Hermitian 175
- linear 35
- multi-linear (n-) 169

Frobenius 22

G
gate (logic) 2
gradient (grad f )196
graph (of a function) 8

H
Hadamard 118
L’Hôpital 138
Hamel 10
Hamilton 42
Hausdorff 10, 146
Heine 146
Hermite 175
Hesse 207
Hilbert 65, 168
homeomorphism 144
horistology 154

I
ideal

- in P (T) 12
- of perspectives 154

image
- direct / inverse 8
- of a linear subspace 37

inclusion 1
integral

- sine / cosine 115
- sum 10, 62

intersection 1
invariant (topological) 153
inverse / inversion

- local 234
- of a function 8
- of a relation 5
- of a transformation 37

isomorphic / isomorphism
- linear spaces 40, 171
- metric 171

J
Jacobi 198
junction 149

K
Kelley 9, 74
kernel 37
Kronecker 32
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L
Lagrange 105, 232
Laplace 237
lattice (-) 7
Leibniz 79, 88
limit

- of a function 18, 144
- of a sequence 18
- punctual 73
- superior 118, 120, 250

Lipschitz
- constant 140
- function 140, 164

logarithm (complex) 128
logic (formulas, etc.) 3

M
Mac Laurin 108
manifold (linear) 30
matrix

- adjoint 42
- transition 34

measure (of an angle) 55
Mertens 86
metric 56

- discrete 56, 75
- Euclidean 56
- pseudo- 56

N
neighborhood(s)

- in C 48

- in R 47

- size of 65
- system of 48

net (subnet) 9
norm 52, 54

- Euclidean 55
- sup / L1 54, 157
- uniform convergence 96

nucleus 179

number
- (ir)rational 17
- cardinal 15
- integers 16
- natural 15
- positive 17
- real 17
- complex 19
- algebraic/transcendent 23
- double 22, 28

O
operation

- algebraic 16, 19, 29
- topological 51
- with functions 8, 36, 185
- with sequences / series 85
- with sets 1

operator
- additive 34
- adjoint 176
- bounded 165
- continuous 165
- homogeneous 34
- integration 35
- linear 34, 165
- self-adjoint 176
- topological 50

order
- causality 13
- lexicographic 13
- partial / total 5
- product 6, 58
- strict 7
- well 5

orthogonality 55

P
part

- entire 136
- of a total set 1
- real / imaginary 20, 24

partition 6
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plane
- hyper- 30
- complex 20

polynomial
- characteristic 41
- Taylor 104

point(s)
- accumulation 50, 62
- adherent 50
- at infinity 153
- convergence 94
- critical 253
- extreme 214
- fix 67, 68
- frontier 50
- inflexion 108
- interior 50
- intermediate 6, 62
- regular / singular 252
- stationary 214

pole
- North 21
- order of 254
- singularity 254

power
- complex 128
- of continuum 15
- set P (T) 1

product
- Cartesian 5
- convolution 85
- order 6
- scalar 52, 53
- topological 51, 148

prolongation
- continuous 144
- analytic 251

projection
- canonical 74, 148, 197
- C on R 235

- function 8
- stereographical 21

Pythagoras 55

Q
quaternions 22

R
Raabe 83, 87
relation(s) 5
remainder

- Cauchy’s form 105
- Lagrange’s form 105, 213
- Taylor 104

Riemann 21
- C-R conditions 247
- sphere 21
- integral 62

Riesz 168
Rolle 105

S
Schwarz 53, 207
segment (line) 30
series

- alternate 79
- complex geometric 121
- complex power 121
- geometric 93, 117
- harmonic 79
- numeric 77
- of functions 94
- power 117
- product 85, 92

sequence 9
- bounded 65
- functions 94
- fundamental (Cauchy) 70
- generalized (net) 9
- real / imaginary 160
- u-fundamental 96

set
- bounded 65
- convex 30
- connected 149, 255
- connected by arcs 150
- countable 15
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- dense 64
- directed 6
- equivalent 15
- fuzzy 9
- of complex numbers 19
- of real numbers 18
- ordered 5
- separated 149

signature 177
singularity

- apparent 263
- condensation of 103
- critical 253
- essential 254
- isolated 254

space(s)
- complete 65, 71, 73
- dual 35, 165
- Euclidean 52
- isomorphic 40
- linear real / complex 29
- metric 56, 70
- normed 54
- proper (subspace) 41
- scalar product 52
- subspace 29
- topological 48, 51, 147
- u-topological 157

spectrum 41
Stirling 131
Stolz 76, 86, 88
structure

- algebraic 29, 47
- topologic 47, 48

sum
- infinite 77
- integral 10, 62
- partial 77

Sylvester 177
- inertia law 177
- theorem 178, 182

T
Taylor 104

- formula 213
- polynomial 104
- remainder 104

topology 48
- compatible 51
- discrete / rough 50, 154
- Euclidean 48, 57
- intrinsic 49, 57
- locally compact 159
- of half-intervals 49
- quotient / product 51, 148
- uniform 157

trace 45
transformation

- linear 34
- smooth 234

transposition 33
Tukey 10

U
union 1

V
value (proper) 41
vector 29

- free 30
- linearly (in)dependent 32
- position 30
- proper 41

W
Waerden 103
Weierstrass 18, 70
weight (function) 52

Z
Zermelo 10
Zorn 10
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