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1 Introductive notions

Let the matrix with m rows and n columns

A = (aij)1≤i≤m
1≤j≤n

.

Reading of a matrix in C:
// Declaration of variables
int n, m, i, j;
float a[10][10];
printf(”give the number of the rows m=”);
scanf("%d",&m);
printf(”give the number of the columns n=”);
scanf("%d",&n);
// we read the elemnts of matrix A
for(i=1;i<=m;i++)

for(j=1;j<=n;j++)
{

printf("\n a[%d][%d]=",i,j);

scanf("%f",&a[i][j]);
}

Printing of a matrix in C:
for(i=1;i<=m;i++)

{

for(j=1;j<=n;j++)
printf("%f", a[i][j]);

printf("\n");
}

Sum and differences of two matrices

Exercise 1. Let

A =

 3 0
1 3
−2 −2

 and B =

 −1 2
0 7
0 5


Compute A+B, A−B and B −A.
Pseudocode Algorithm to compute A+B
// Read m,n−the numbers of rows and columns corresponding to A and B, and the elements of A
and B
1. read m,n, aij , bij , 1 ≤ i ≤ m, 1 ≤ j ≤ n
2. for i = 1, 2, ...,m

2.1. for j = 1, 2, ..., n
// Compute the elements of matrix C=A+B
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2.1.1 cij ← aij + bij
3. we print the matrix C = (cij)1≤i≤m

1≤j≤n

.

The algorithm to multiply two matrices

Let
A = (aij)1≤i≤m

1≤j≤n

∈Mmn(R) and B = (bij)1≤i≤n
1≤j≤p

∈Mnp(R).

Then A ·B = (cij)1≤i≤m
1≤j≤p

∈Mmp(R), where

(1) cij =

n∑
k=1

aik · bkj , ∀1 ≤ i ≤ m, ∀1 ≤ j ≤ p.

Exercise 2. Compute A ·B, where

A =

 3 0
1 3
−2 −2

 and B =

(
0 2 2
1 3 −1

)
.

Pseudocode Algorithm to compute AB
1. read m,n, p, aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, bij , 1 ≤ i ≤ n, 1 ≤ j ≤ p
2. for i = 1, 2, ...,m

2.1. for j = 1, 2, ..., p
2.1.1 cij ← 0
2.1.2 for k = 1, 2, ..., n

2.1.2.1 cij ← cij + aik · bkj
3. we print the matrix C = (cij)1≤i≤m

1≤j≤p

.

The algorithm to interchange two rows into a matrix

Exercise 3. Let

A =

 0 2 2 2
1 3 −1 2
4 3 0.5 2

 .

Interchange the row 2 with row 3 in above matrix and print the matrix.

Pseudocode Algorithm
1. read m,n, aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n
2. for j = 1, 2, ..., n

2.1. aux← a2j
2.2. a2j ← a3j
2.3. a3j ← aux

3. we print the matrix (aij)1≤i≤m
1≤j≤n

.
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Exercise 4. Let

A =

 0 2 1
1 0 −1
4 1 2

 şi B =

 2 0 1
3 −1 −1
0 1 −1

 .

a) Compute A− 2B, A2, BA, AB, B + 2I3;
b) Interchange the row 3 with row 1 in matrix B and print the matrix;
c) Compute the sum of the elements on the principal diagonal of matrix A · B (i.e. the trace of

A ·B not
= Tr(A ·B)).

The maximum and minimum of elements in a vector

Exercise 5. Let

v =

(
2, −2, 3,

1

3
, −0.5

)
.

Find the maximum and minimum of elements of vector v.

Pseudocode Algorithm
1. read n, vi, 1 ≤ i ≤ n
2. max ← v[1]
3. for i = 1, 2, ..., n

3.1. if max< v[i] then
3.1.1 max ← v[i]

4. print max

2 Gauss elimination method – the basic version

Describing the problem: We consider the linear system

(2) A · x = b,

where A ∈Mn (R) is the matrix associated to system (2) and b ∈ Rn is the vector containing the free
terms of system (2).
Our goal is to determine, if possible, x ∈ Rn, where x represents the unique solution of system (2).

The method:
We consider the augmented matrix (A | b) = (aij) 1≤i≤n

1≤j≤n+1

, where ai,n+1 = bi, 1 ≤ i ≤ n.

The Gauss method consists of processing the augmented matrix (A | b) such that, in n − 1 steps the
matrix A becomes upper-triangular:

(3)



a
(n)
11 a

(n)
12 ... a

(n)
1,n−1 a

(n)
1,n

0 a
(n)
22 ... a

(n)
2,n−1 a

(n)
2,n

...
... ...

...

0 0 ... a
(n)
n−1,n−1 a

(n)
n−1,n

0 0 ... 0 a
(n)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(n)
1,n+1

a
(n)
2,n+1

...

a
(n)
n−1,n+1

a
(n)
n,n+1


= A(n), where A(1) = (A | b).

4



If a
(k)
kk 6= 0, 1 ≤ k ≤ n− 1, where the element a

(k)
kk is called pivot, in order to arrive at matrix (3) we

apply the following algorithm. For k = 1, 2, . . . , n− 1,,

• we copy the first k rows (lines);

• on column ”k”, under pivot, the elements will be null (zero);

• the remaining elements, situated below the row ”k” and at the right hand side of the column
”k”, will be determined using the so-called ”rectangle rule”, described below:

...
...

row k · · · a
(k)
kk · · · · · · · · · a

(k)
kj ...

...
...

row i · · · a
(k)
ik · · · · · · · · · a

(k)
ij ...

...
...

column k column j

⇒ a
(k+1)
ij =

a
(k)
kk a

(k)
ij − a

(k)
ik a

(k)
kj

a
(k)
kk

.

Therefore, for 1 ≤ k ≤ n− 1, we will use the following formulae:

(4) a
(k+1)
ij =


a
(k)
ij 1 ≤ i ≤ k, i ≤ j ≤ n+ 1

0 1 ≤ j ≤ k, j + 1 ≤ i ≤ n

a
(k)
ij −

a
(k)
ik

a
(k)
kk

· a(k)kj k + 1 ≤ i ≤ n, k + 1 ≤ j ≤ n+ 1.

After arriving at the upper-triangular matrix described by (3), we realize that we have actually
arrived at an upper-triangular system equivalent to (2):

(5)



a
(n)
11 x1 + a

(n)
12 x2 + ...+ a

(n)
1n xn = a

(n)
1,n+1

a
(n)
22 x1 + ...+ a

(n)
2n xn = a

(n)
2,n+1

..........

a
(n)
ii x1 + ...+ a

(n)
in xn = a

(n)
i,n+1

..........

a
(n)
nn xn = a

(n)
n,n+1.

This system is solvable by using the back substitution method, that is, by applying the following
formulae:

(6) xn = a
(n)
n,n+1

/
a(n)nn , if a(n)nn 6= 0,

and, for i = n− 1, n− 2, ..., 1,

(7) xi =

a(n)i,n+1 −
n∑

j=i+1

a
(n)
ij · xj

/a(n)ii .

Pseudocode Algorithm
// Read n, the dimension of matrix A and the augmented matrix (A | b)
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1. read n, aij , 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1
2. for k = 1, 2, ..., n− 1

2.1. if akk 6= 0 then
//Apply the formulae from Gauss method (the rectangle rule), see (11).
2.1.1. for i = k + 1, k + 2, ..., n

2.1.1.1. for j = k + 1, k + 2, ..., n+ 1
2.1.1.1.1. aij ← aij − aik · akj/akk

3. if ann = 0 then
3.1. write ’The system does not have unique solution’
3.2. exit

//Determine xn by applying formula (6)
4. an,n+1 ← an,n+1/ann
//Determine xi, n− 1 ≥ i ≥ 1, by applying formulae (7)
5. for i = n− 1, n− 2, ..., 1

5.1. S ← 0
5.2. for j = i+ 1, i+ 2, ..., n

5.2.1. S ← S + aij · aj,n+1

5.3. ai,n+1 ← (ai,n+1 − S)/aii
6. write ′xi =′, ai,n+1, 1 ≤ i ≤ n.

Exercises:

I. Include additional instructions at the second step of the algorithm to take into account the case
when akk = 0:

a) announce that akk = 0;

b) instead of announcing that akk = 0, find alin,k 6= 0 with lin = k+ 1, k+ 2, ..., n and switch
the lines lin and k.

II. Mathematically (=by hand) solve the following systems using the Gauss method

a)


x1 + 2x2 + 3x3 + x4 = 7
2x1 + x2 + 2x3 + 3x4 = 8
2x1 − x2 − 4x3 + 4x4 = 1
2x1 + x3 − 3x4 = 0

b)


x1 + 3x2 − 2x3 − 4x4 = −2
2x1 + 6x2 − 7x3 − 10x4 = −6
−x1 − x2 + 5x3 + 9x4 = 9
−3x1 − 5x2 + 15x4 = 13

c)


x− y − 3z = 8
3x− y + z = 4
2x+ 3y + 19z = 10.

3 Gauss method with partial/total pivoting at every step

The problem: We consider the linear system

(8) A · x = b,

where A ∈Mn (R) is the matrix associated to system (8) and b ∈ Rn is the vector containing the free
terms of system (8).
Our goal is to determine, if possible, x ∈ Rn, where x represents the unique solution of system (8).
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Recalling the basic Gauss method:
We consider the augmented matrix (A | b) = (aij) 1≤i≤n

1≤j≤n+1

, where ai,n+1 = bi, 1 ≤ i ≤ n.

The Gauss method consists of processing the augmented matrix (A | b) such that, in n − 1 steps the
matrix A becomes upper-triangular:

(9)



a
(n)
11 a

(n)
12 ... a

(n)
1,n−1 a

(n)
1,n

0 a
(n)
22 ... a

(n)
2,n−1 a

(n)
2,n

...
... ...

...

0 0 ... a
(n)
n−1,n−1 a

(n)
n−1,n

0 0 ... 0 a
(n)
n,n

∣∣∣∣∣∣∣∣∣∣∣∣∣

a
(n)
1,n+1

a
(n)
2,n+1

...

a
(n)
n−1,n+1

a
(n)
n,n+1


= A(n), where A(1) = (A | b).

(10) At every step k we test if a
(k)
kk 6= 0, 1 ≤ k ≤ n− 1.

If a
(k)
kk 6= 0, 1 ≤ k ≤ n− 1, (where the element a

(k)
kk is called pivot), in order to arrive at matrix (9),

we apply the following algorithm. For k = 1, 2, . . . , n− 1,,

• we copy the first k rows (lines);

• on column ”k”, under the pivot, the elements will be null (zero);

• the remaining elements, situated below the row ”k” and at the right hand side of the column
”k”, will be determined using the so-called ”rectangle rule”, described below:

...
...

row k · · · a
(k)
kk · · · · · · · · · a

(k)
kj ...

...
...

row i · · · a
(k)
ik · · · · · · · · · a

(k)
ij ...

...
...

column k column j

⇒ a
(k+1)
ij =

a
(k)
kk a

(k)
ij − a

(k)
ik a

(k)
kj

a
(k)
kk

.

Therefore, for 1 ≤ k ≤ n− 1, we will use the following formulae:

(11) a
(k+1)
ij =


a
(k)
ij 1 ≤ i ≤ k, i ≤ j ≤ n+ 1

0 1 ≤ j ≤ k, j + 1 ≤ i ≤ n

a
(k)
ij −

a
(k)
ik

a
(k)
kk

· a(k)kj k + 1 ≤ i ≤ n, k + 1 ≤ j ≤ n+ 1.

After arriving at the upper-triangular matrix described by (9), we realize that we have actually
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arrived at an upper-triangular system equivalent to (8):

(12)



a
(n)
11 x1 + a

(n)
12 x2 + ...+ a

(n)
1n xn = a

(n)
1,n+1

a
(n)
22 x1 + ...+ a

(n)
2n xn = a

(n)
2,n+1

..........

a
(n)
ii x1 + ...+ a

(n)
in xn = a

(n)
i,n+1

..........

a
(n)
nn xn = a

(n)
n,n+1.

This system is solvable by using the back substitution method, that is, by applying the following
formulae:

(13) xn = a
(n)
n,n+1

/
a(n)nn , if a(n)nn 6= 0,

and, for i = n− 1, n− 2, ..., 1,

(14) xi =

a(n)i,n+1 −
n∑

j=i+1

a
(n)
ij · xj

/a(n)ii .

The Gauss method with partial or total pivoting at every step makes a numerical im-
provement of the above described method by choosing a better pivot at every step. The
modality of choosing the pivot makes the difference between partial pivoting and total
pivoting. For the Gauss method with partial pivoting at every step, instead of (10) we
will proceed as follows:

FAt every step ”k” we search, on column k, the element a
(k)
ik,k

, k ≤ ik ≤ n, with the
property ∣∣∣a(k)ikk∣∣∣ = max

k≤i≤n

∣∣∣a(k)ik ∣∣∣ .
Then:
1) if a

(k)
ik,k

= 0, system (8) does not have a unique solution.

2) if a
(k)
ik,k
6= 0, the role of the pivot will be played by a

(k)
ik,k

. If, in addition, ik 6= k, then we have to

place a
(k)
ik,k

on the position of a
(k)
k,k, and, to this end, we interchange row k with row ik in the matrix

A(k).

A mathematical example: Solve the following system by using the Gauss method with partial
pivoting at every step 

2x1 + 2x2 + 3x3 + x4 = 6
3x1 + 3x2 + 2x3 + x4 = 2
x1 + x4 = 0
x1 + x2 + x3 = 2

Solution: The extended matrix corresponding to the system is

A(1) = (A|b) =


2 2 3 1
3 3 2 1
1 0 0 1
1 1 1 0

∣∣∣∣∣∣∣∣
6
2
0
2

 .

8



We search the pivot to be put in the position of a11 on the first column. More precisely, we search the
element with the largest absolute value from the first column of the matrix A(1), i.e

max
1≤i≤4

∣∣∣a(1)i1 ∣∣∣ = max
{∣∣∣a(1)11

∣∣∣ , ∣∣∣a(1)21

∣∣∣ , ∣∣∣a(1)31

∣∣∣ , ∣∣∣a(1)41

∣∣∣} =
∣∣∣a(1)21

∣∣∣ = 3.

We interchange row 1 with row 2 in A(1) and we obtain

A(1) L1↔L2=


3 3 2 1
2 2 3 1
1 0 0 1
1 1 1 0

∣∣∣∣∣∣∣∣
2
6
0
2

 .

We now proceed with the Gaussian elimination method as usual. We choose a
(1)
11 = 3 6= 0 to be the

pivot and we keep row 1 from A(1) as it was. In the first column, under the pivot the elements will be
zero and the other elements are calculated using the ”rectangle rule”:

a
(2)
22 =

a
(1)
11 · a

(1)
22 − a

(1)
21 · a

(1)
12

a
(1)
11

=
3 · 2− 2 · 3

3
= 0, a

(2)
23 =

a
(1)
11 · a

(1)
23 − a

(1)
21 · a

(1)
13

a
(1)
11

=
3 · 3− 2 · 2

3
=

5

3
,

a
(2)
24 =

a
(1)
11 · a

(1)
24 − a

(1)
21 · a

(1)
14

a
(1)
11

=
3 · 1− 2 · 1

3
=

1

3
, a

(2)
25 =

a
(1)
11 · a

(1)
25 − a

(1)
21 · a

(1)
15

a
(1)
11

=
3 · 6− 2 · 2

3
=

14

3
,

a
(2)
32 =

a
(1)
11 · a

(1)
32 − a

(1)
31 · a

(1)
12

a
(1)
11

=
3 · 0− 1 · 3

3
= −1, a

(2)
33 =

a
(1)
11 · a

(1)
33 − a

(1)
31 · a

(1)
13

a
(1)
11

=
3 · 0− 1 · 2

3
= −2

3
,

a
(2)
34 =

a
(1)
11 · a

(1)
34 − a

(1)
31 · a

(1)
14

a
(1)
11

=
3 · 1− 1 · 1

3
=

2

3
, a

(2)
35 =

a
(1)
11 · a

(1)
35 − a

(1)
31 · a

(1)
15

a
(1)
11

=
3 · 0− 1 · 2

3
= −2

3
,

a
(2)
42 =

a
(1)
11 · a

(1)
42 − a

(1)
41 · a

(1)
12

a
(1)
11

=
3 · 1− 1 · 3

3
= 0, a

(2)
43 =

a
(1)
11 · a

(1)
43 − a

(1)
41 · a

(1)
13

a
(1)
11

=
3 · 1− 1 · 2

3
=

1

3
,

a
(2)
44 =

a
(1)
11 · a

(1)
44 − a

(1)
41 · a

(1)
14

a
(1)
11

=
3 · 0− 1 · 1

1
=

1

3
, a

(2)
45 =

a
(1)
11 · a

(1)
45 − a

(1)
41 · a

(1)
15

a
(1)
11

=
3 · 2− 1 · 2

3
=

4

3
.

Therefore, we obtain the matrix

A(2) =


3 3 2 1
0 0 5

3
1
3

0 −1 −2
3

2
3

0 0 1
3 −1

3

∣∣∣∣∣∣∣∣
2
14
3
−2

3
4
3

 .

We search
max
2≤i≤4

∣∣∣a(2)i2 ∣∣∣ = max
{∣∣∣a(2)22

∣∣∣ , ∣∣∣a(2)32

∣∣∣ , ∣∣∣a(2)42

∣∣∣} =
∣∣∣a(2)32

∣∣∣ = | − 1|.

We interchange row 2 with row 3 in in A(2) and we get

A(2) L2↔L3=


3 3 2 1
0 −1 −2

3
2
3

0 0 5
3

1
3

0 0 1
3 −1

3

∣∣∣∣∣∣∣∣
2
−2

3
14
3
4
3

 .

We remark that on column 2 under the pivot a
(2)
22 = −1 all the elements are null and we get

A(3) = A(2).
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We search

max
3≤i≤4

∣∣∣a(3)i3 ∣∣∣ = max
{∣∣∣a(3)33

∣∣∣ , ∣∣∣a(3)43

∣∣∣} =
∣∣∣a(3)33

∣∣∣ =

∣∣∣∣53
∣∣∣∣ .

We choose a
(3)
33 = 5

3 to be the pivot and we keep rows 1, 2 and 3 from A(3) as they were. In column 3,
under the pivot the elements will be zero and the other elements are calculated using the ”rectangle
rule”:

a
(4)
44 =

a
(3)
33 · a

(3)
44 − a

(3)
43 · a

(3)
34

a
(3)
33

=
5
3 ·
(
−1

3

)
− 1

3 ·
1
3

5
3

= −2

5
,

a
(4)
45 =

a
(3)
33 · a

(3)
45 − a

(3)
43 · a

(3)
35

a
(3)
33

=
5
3 ·

4
3 −

1
3 ·

14
3

5
3

=
2

5
.

We obtain

A(4) =


3 3 2 1
0 −1 −2

3
2
3

0 0 5
3

1
3

0 0 0 −2
5

∣∣∣∣∣∣∣∣
2
−2

3
14
3
2
5

 .

The corresponding system of A(4) is
3x1 + 3x2 + 2x3 + x4 = 1
−x2 − 2

3x3 + 2
3x4 = −2

3
5
3x3 + 1

3x4 = 14
3

−2
5x4 = 2

5 .

The solution is
x4 = 2

5/
(
−2

5

)
= −1

x3 =
(
14
3 −

1
3x4
)
/53 =

(
14
3 −

1
3 · (−1)

)
/53 = 3

x2 = (−2
3 −

2
3x4 + 2

3x3)/(−1) = (−2
3 −

2
3 · (−1) + 2

3 · 3)/(−1) = −2
x1 = (2− x4 − 2x3 − 3x2)/3 = (2− (−1)− 2 · 3− 3 · (−2))/3 = 1,

and, therefore 
x1
x2
x3
x4

 =


1
−2
3
−1

 .

Let us now provide the pseudocode algorithm for this method.

Pseudocode Algorithm for the Gauss method with partial pivoting
1. read n, aij , 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1
2. for k = 1, 2, ..., n− 1

2.1. piv ← |akk|
2.2. lin← k
2.3. for i = k + 1, k + 2, ..., n

2.3.1. if piv < |aik| then
2.3.1.1. piv ← |aik|
2.3.1.2. lin← i
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2.4. if piv = 0 then
2.4.1. write ’The system does not have unique a solution’
2.4.2. exit

2.5. if lin 6= k then
2.5.1. for j = k, k + 1, ..., n+ 1

2.5.1.1. swap akj with alin,j
2.6. for i = k + 1, k + 2, ..., n

2.6.1. for j = k + 1, k + 2, ..., n+ 1
2.6.1.1. aij ← aij − aik · akj/akk

3. dacă ann = 0 then
3.1. write ’The system does not have a unique solution’
3.2. exit

4. an,n+1 ← an,n+1/ann
5. for i = n− 1, n− 2, ..., 1

5.1. S ← 0
5.2. for j = i+ 1, i+ 2, ..., n

5.2.1. S ← S + aij · aj,n+1

5.3. ai,n+1 ← (ai,n+1 − S)/aii
6. write ′xi =′, ai,n+1, 1 ≤ i ≤ n.

Exercises:

1. Complete the above algorithm such that, at each stage, the following things to be displayed:

– the value of the pivot;

– the position where we find the element that will play the role of the pivot (the row and the
column);

– the indices of the lines that have been permuted;

– the total number of permutations of lines effectuated.

2. On the above mathematical example we noticed that every time we have 0 under the pivot, the
corresponding line does not change. Can you improve the algorithm based on this remark? (the
idea is to reduce the cost of the algorithm).

3. When solving the following linear systems using the Gauss method with partial pivoting at every
step one notices that it does not have a unique solution:

12x1 + 6x2 + 4x3 + x4 = −22
24x1 + 10x2 + 4x3 + x4 = −54
−2x1 + x4 = 6
8x1 + 4x2 + 2x3 + x4 = −16

But what happens when you solve the system using the above algorithm on a computer? Find
an explanation and improve the algorithm.
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Let us pass now to the Gauss method with total pivoting at every step. Then, instead
of (10) we will proceed as follows:

FAt every step ”k” we search the element a
(k)
ik,jk

, k ≤ ik ≤ n, k ≤ jk ≤ n, with the property∣∣∣a(k)ikjk ∣∣∣ = max
k≤i≤n
k≤j≤n

∣∣∣a(k)ij ∣∣∣ .
Then:
1) if a

(k)
ik,jk

= 0, ∀k ≤ ik, jk ≤ n, the system (2) does not have unique solution.

2) if a
(k)
ik,jk
6= 0, the role of the pivot will be played by a

(k)
ik,jk

. If, in addition, ik 6= k or jk 6= k,

we have to place a
(k)
ik,jk

on the position of a
(k)
k,k, and, to this end, we interchange row k with

row ik (if ik 6= k) and/or we interchange the column k with column jk (if jk 6= k) in the
matrix A(k).

A mathematical example. a) Solve the following system by using the Gauss method with total
pivoting at every step 

−2x1 + x3 = 1
x1 + 4x2 + x4 = −3
2x1 − 3x4 = −3
−2x1 + x3 + x4 = 2.

b) Find the value of the determinant of the matrix A, corresponding to the above system.
Sol: a) The extended matrix corresponding to the system is

A =


−2 0 1 0
1 4 0 1
2 0 0 −3
−2 0 1 1

∣∣∣∣∣∣∣∣
1
−3
−3
2

 .

We search the element with the property∣∣∣piv(1)∣∣∣ = max
1≤i,j≤4

∣∣∣a(1)ij ∣∣∣ =
∣∣∣a(1)22

∣∣∣ = 4.

The pivot piv(1) should be a
(1)
22 = 4.

First we interchange row 1 with row 2 (and we have seen that this does not have any impact on the
solution of the system), and secondly, we interchange column 1 with column 2 in A(1), but this means
that we also interchange x1 with x2, so this should be remembered at the end! We obtain the matrix

A(1) L1↔L2=


1 4 0 1
−2 0 1 0
2 0 0 −3
−2 0 1 1

∣∣∣∣∣∣∣∣
−3
1
−3
2

 C1 ↔ C2
∼


4 1 0 1
0 −2 1 0
0 2 0 −3
0 −2 1 1

∣∣∣∣∣∣∣∣
−3
1
−3
2

 .

We choose a
(1)
11 = 4 6= 0 as a pivot and we remark that

A(2) = A(1).

12



We search the element with the property∣∣∣piv(2)∣∣∣ = max
2≤i,j≤4

∣∣∣a(2)ij ∣∣∣ =
∣∣∣a(2)34

∣∣∣ = | − 3|.

We interchange row 2 with row 3, and then we interchange column 2 with column 4 in A(2), meaning
that we also interchange x2 with x4. We obtain

A(2) L2↔L3∼


4 1 0 1
0 2 0 −3
0 −2 1 0
0 −2 1 1

∣∣∣∣∣∣∣∣
−3
−3
1
2

 C2 ↔ C4
∼


4 1 0 1

0 −3 0 2

0 0 1 −2
0 1 1 −2

∣∣∣∣∣∣∣∣
−3
−3
1
2

 .

We choose a
(2)
22 = −3 6= 0 as a pivot and we keep rows 1 and 2 from A(2) as they were. In the second

column, under the pivot the elements will be zero and the other elements are calculated using the
”rectangle rule”, and we obtain

A(3) =


4 1 0 1
0 −3 0 2
0 0 1 −2
0 0 1 −4

3

∣∣∣∣∣∣∣∣
−3
−3
1
1

 .

We search the element with the property∣∣∣piv(3)∣∣∣ = max
3≤i,j≤4

∣∣∣a(3)ij ∣∣∣ =
∣∣∣a(3)34

∣∣∣ = |−2| .

We interchange column 3 with column 4 in A(3), meaning that we also interchange x3 with x4. We
obtain

A(3)
C2 ↔ C4
∼


4 1 1 0
0 −3 2 0

0 0 −2 1

0 0 −4
3 1

∣∣∣∣∣∣∣∣
−3
−3
1
1

 .

We choose a
(3)
33 = −2 6= 0 pivot and we get

A(4) =


4 1 1 0
0 −3 2 0
0 0 −2 1
0 0 0 1

3

∣∣∣∣∣∣∣∣
−3
−3
1
1
3

 .

We deduce, by back substitution method, the intermediate solution
x4 = 1
x3 = 0
x2 = 1
x1 = −1,

and we interchange in the following order
component 3↔ component 4 (since C3 ↔ C4)
component 2↔ component 4 (since C2 ↔ C4)
component 1↔ component 2 (since C1 ↔ C2).
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More precisely, we have
x1 = −1
x2 = 1
x3 = 0
x4 = 1

x3↔x4⇒


x1 = −1
x2 = 1
x3 = 1
x4 = 0

x2↔x4⇒


x1 = −1
x2 = 0
x3 = 1
x4 = 1

x1↔x2⇒


x1 = 0
x2 = −1
x3 = 1
x4 = 1.

So the solution of the system is 
x1 = 0
x2 = −1
x3 = 1
x4 = 1.

b) det(A) = (−1)2+3a
(4)
11 · a

(4)
22 · a

(4)
33 · a

(4)
44 = −4 · (−3) · (−2) · 13 = −8

Let us provide the pseudocode algorithm for this method as well.

Pseudocode Algorithm for the Gauss method with total pivoting
1. read n, aij , 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1, ε
2. npc← 0
3. for k = 1, 2, ..., n− 1

3.1. piv ← |akk|
3.2. lin← k
3.3. col← k
3.4. for j = k, k + 1, ..., n

3.4.1. for i = k, k + 1, ..., n
3.4.1.1. if piv < |aij | then

3.4.1.1.1. piv ← |aij |
3.4.1.1.2. lin← i
3.4.1.1.3. col← j

3.5. if piv ≤ ε then
3.5.1. write ’The system does not have a unique solution’
3.5.2. exit

3.6. if lin 6= k then
3.6.1. for j = k, k + 1, ..., n+ 1

3.6.1.1. swap akj with alin,j
3.7. if col 6= k then

3.7.1. npc← npc+ 1
3.7.2. c(npc, 1)← k
3.7.3. c(npc, 2)← col
3.7.4. for i = 1, 2, ..., n

3.7.4.1. swap aik with ai,col
3.8. for i = k + 1, k + 2, ..., n

3.8.1. if aik 6= 0
3.8.1.2. for j = k + 1, k + 2, ..., n+ 1

3.8.1.2.1. if akj 6= 0
3.8.1.2.1.1. aij ← aij − aik · akj/akk

4. if |ann| ≤ ε then

14



4.1. write ’The system does not have a unique solution’
4.2. exit

5. an,n+1 ← an,n+1/ann
6. for i = n− 1, n− 2, ..., 1

6.1. S ← 0
6.2. for j = i+ 1, i+ 2, ..., n

6.2.1. S ← S + aij · aj,n+1

6.3. ai,n+1 ← (ai,n+1 − S)/aii
7. if npc 6= 0 then

7.1. for i = npc, npc− 1, ..., 1
7.1.1. swap ac(i,1),n+1 with ac(i,2),n+1

8. write ′xi =′, ai,n+1, 1 ≤ i ≤ n.

Exercises:

1. Complete the above algorithm such that it will calculate in addition the value of the determinant
of the matrix associated to the system.

4 The LR Doolitle factorization method for solving linear systems

The problem: We consider the linear system

(15) A · x = b,

where A ∈ Mn (R) is the matrix associated to system (15) and b ∈ Rn is the vector containing the
free terms of system (15).
Our goal is to determine, if possible, x ∈ Rn, where x represents the unique solution of system (15).

Describing the method:
The LR Doolitle factorization method consists in the decomposition of the matrix A in the following
form

A = L ·R,where

L =


1 0 ... 0
l21 1 ... 0
...

...
. . .

...
ln1 ln2 ... 1

 = lower-triangular
matrix;

R =


r11 r12 ... r1n
0 r22 ... r2n
...

...
. . .

...
0 0 ... rnn

 = upper-triangular
matrix.
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The elements of matrices L and R are determined by the following formulae

(16)



r1j = a1j , 1 ≤ j ≤ n
li1 = ai1/r11, 2 ≤ i ≤ n

rkj = akj −
k−1∑
h=1

lkh · rhj , 2 ≤ k ≤ n, k ≤ j ≤ n.

lik =

(
aik −

k−1∑
h=1

lih · rhk

)
/rkk, 2 ≤ k ≤ n, k + 1 ≤ i ≤ n.

Remarks:

1) Any non-singular (invertible) matrix A admits an LR factorization (if necessary, we permute some
rows).

2) In calculus, the order of determining the elements of matrices L and R using formulae (16) is the
following: first row from R, first column from L, second row from R, second column from L, etc.
After determing L and R we replace A by L ·R in system (15):

A · x = b⇐⇒ L ·R · x︸︷︷︸
=y

= b.

By denoting Rx = y, we get to solve the following systems:{
L · y = b
R · x = y.

The advantage of solving two systems instead of one comes from the fact that both L and R are
triangular matrices.

We solve L · y = b by direct substitution:

(17)


y1 = b1,

yi = bi −
i−1∑
k=1

lik · yk, i = 2, 3, ..., n.

We solve R · x = y by back substitution:

(18)


xn = yn/rnn,

xi =

(
yi −

n∑
k=i+1

rik · xk

)
/rii, i = n− 1, n− 2, ..., 1.

A mathematical example: Solve the following system using the LR Doolitlle factorization method:
−x1 + 2x2 + 3x3 = −8
x1 − 2x2 − x3 = 4
−2x1 + 6x2 + 6x3 = −14.
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Proof. The extended matrix is

A =

 −1 2 3
1 −2 −1
−2 6 6

∣∣∣∣∣∣
−8
4
−14

 .

We check if the principal minors of matrix A are nonzero.
∆1 = −1 6= 0,

∆2 =

∣∣∣∣ −1 2
1 −2

∣∣∣∣ = 0.

Since the determinant ∆2 = 0, we interchange the row 2 with row 3 in the extended matrix A, and
we obtain

A
L2↔L3=

 −1 2 3
−2 6 6
1 −2 −1

∣∣∣∣∣∣
−8
−14

4

 .

We have
∆1 = −1 6= 0,

∆2 =

∣∣∣∣ −1 2
−2 6

∣∣∣∣ = −2 6= 0,

∆3 = det(A) =

∣∣∣∣∣∣
−1 2 3
−2 6 6
1 −2 −1

∣∣∣∣∣∣ = −4 6= 0.

Since ∆1,∆2,∆3 6= 0, the matrix A =

 −1 2 3
−2 6 6
1 −2 −1

 admits a LR factorization. More precisely,

we search two matrixes

L =

 1 0 0
l21 1 0
l31 l32 1

 and R =

 r11 r12 r13
0 r22 r23
0 0 r33

 ,

such that L ·R = A.

We determine the elements of first line of the matrix R:
r11 = a11 = −1.
r12 = a12 = 2.
r13 = a13 = 3.

We determine the elements of the first column of the matrix L:
l21 = a21

r11
= −2
−1 = 2.

l31 = a31
r11

= 1
−1 = −1.

We determine the elements of the second line of the matrix R:
r22 = a22 − l21r12 = 6− 2 · 2 = 2.
r23 = a23 − l21r13 = 6− 2 · 3 = 0.

We determine the elements of the second column of the matrix L:
l32 = (a32 − l31r12) /r22 = (−2− (−1) · 2) /2 = 0.
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We determine the elements of the third line of the matrix R:
r33 = a33 − l31r13 − l32r23 = −1− (−1) · 3− 0 · 0 = 2.

So, we get

L =

 1 0 0
2 1 0
−1 0 1

 R =

 −1 2 3
0 2 0
0 0 2


Then our system Ax = b is equivalent to

L · (R · x) = b.

If we denote R · x = y, we need solve the following two triangular systems:
(S1) : L · y = b,
(S2) : R · x = y.

The lower-triangular system (S1) is equivalent to 1 0 0
2 1 0
−1 0 1

 y1
y2
y3

 =

 −8
−14

4


We remark that the free terms column b is chosen from the matrix A in which we already interchanged
the lines. The solution y is obtain by direct substitution

y1 = −8
y2 = −14− 2y1 = 2
y3 = 4 + y1 − 0y2 = −4.

The upper-triangular system (S2) is equivalent to −1 2 3
0 2 0
0 0 2

 x1
x2
x3

 =

 −8
2
−4

 .

The solution x is obtain by back substitution
x3 = −4/2 = −2
x2 = (2− 0x3)/2 = 1
x1 = (−8− 3x3 − 2x2)/(−1) = 4.

So, the solution of system is x1
x2
x3

 =

 4
1
−2



Pseudocode Algorithm
1. read n, aij , 1 ≤ i ≤ n, 1 ≤ j ≤ n+ 1
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2. if a11 = 0 then
2.1. i← 1
2.2. repeat

2.2.1. i← i+ 1
until ai1 6= 0 or i > n

2.3. if i > n then
2.3.1. write ’The system does not have a unique solution’
2.3.2. exit

2.4. for j = 1, 2, ..., n+ 1
2.4.1. swap a1j with aij

3. for i = 2, 3, ..., n
3.1. ai1 ← ai1/a11

4. for k = 2, 3, ..., n
4.1. i← k
4.2. repeat

4.2.1. S ← 0; piv ← 0;
4.2.2. for h = 1, 2, ..., k − 1

4.2.2.1. S ← S + aih · ahk
4.2.3. piv ← aik − S
4.2.4. i← i+ 1
until piv 6= 0 or i > n

4.3. if piv = 0 then
4.3.1. write ’The system does not have a unique solution’
4.3.2. exit

4.4. if i 6= k + 1 then
4.4.1. for j = 1, 2, ...n+ 1

4.4.1.1. swap akj with ai−1,j
4.5. for j = k, k + 1, ..., n

4.5.1. S ← 0
4.5.2. for h = 1, 2, ..., k − 1

4.5.2.1. S ← S + akh · ahj
4.5.3. akj ← akj − S

4.6. for i = k + 1, k + 2, ..., n
4.6.1. S ← 0
4.6.2. for h = 1, 2, ..., k − 1

4.6.2.1. S ← S + aih · ahk
4.6.3. aik ← (aik − S)/akk

5. for i = 2, 3, ..., n
5.1. S ← 0
5.2. for k = 1, 2, ..., i− 1

5.2.1. S ← S + aik · ak,n+1

5.3. ai,n+1 ← ai,n+1 − S
6. an,n+1 ← an,n+1/ann
7. for i = n− 1, n− 2, ..., 1

7.1. S ← 0
7.2. for j = i+ 1, i+ 2, ..., n

7.2.1. S ← S + aij · aj,n+1
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7.3. ai,n+1 ← (ai,n+1 − S)/aii
8. write ′xi =′, ai,n+1, 1 ≤ i ≤ n.

Exercises:

1. Display the matrices L and R.

2. Calculate the determinant of matrix A using the LR factorization method and complete this
into the algorithm.

5 LR factorization for tridiagonal matrix with application to solving
linear systems

The problem: We consider the linear system

(19) A · x = t,

where A =



a1 b1 0 0 ... 0 0
c1 a2 b2 0 ... 0 0
0 c2 a3 b3 ... 0 0
...

...
...

... · · ·
...

...
0 0 0 0 ... an−1 bn−1
0 0 0 0 ... cn−1 an


is a tridiagonal matrix and t ∈ Rn is the free term

of system (19).
Our goal is to determine, if possible, x ∈ Rn, where x represents the unique solution of system (19).

Describing the method: We search

L =


1 0 0 ... 0 0
l1 1 0 ... 0 0
0 l2 1 ... 0 0
...

...
... ...

...
...

0 0 0 ... ln−1 1


-lower-triangular

matrix;
R =



r1 s1 0 0 ... 0
0 r2 s2 0 ... 0
0 0 r3 s3 ... 0
...

...
...

... ...
...

0 0 0 0 ... sn−1
0 0 0 0 ... rn


-upper-triangular

matrix;

with property A = L · R. To determine the elements of matrices L and R we apply the following
formulae

(20)


r1 = a1,
si = bi, 1 ≤ i ≤ n− 1
li = ci/ri, 1 ≤ i ≤ n− 1
ri+1 = ai+1 − li · si, 1 ≤ i ≤ n− 1.

The system (19) it is equivalent with
L ·R · x︸︷︷︸

=y

= t.
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To find the solution x, we solve successive the systems{
L · y = t
R · x = y.

We have the following formulae

(21)

{
y1 = t1,
yi = ti − li−1 · yi−1, i = 2, 3, ..., n.

respectively,

(22)

{
xn = yn/rn,
xi = (yi − si · xi+1) /ri, i = n− 1, n− 2, ..., 1.

Example: Solve the following system:

a)


−2x1 + 3x2 = 1
5x1 + 3x2 − x3 = 7
−x2 + x3 = 0.

.

Solution: The matrix associated to this system is

A =

 −2 3 0
5 3 −1
0 −1 1

 .

We notice that A is a tridiagonal matrix.

We check if the diagonal minors of matrix A are non-zero.
∆1 = −2 6= 0,

∆2 =

∣∣∣∣ −2 3
5 3

∣∣∣∣ = −21 6= 0,

∆3 = det(A) =

∣∣∣∣∣∣
−2 3 0
5 3 −1
0 −1 1

∣∣∣∣∣∣ = −19 6= 0.

Since ∆1,∆2,∆3 6= 0, the matrix A admits a LR factorization. More precisely, we search

L =

 1 0 0
l1 1 0
0 l2 1

 şi R =

 r1 s1 0
0 r2 s2
0 0 r3

 ,

such that L ·R = A.

We keep the three diagonals with non-zero elements from A into three vectors:

a = (a1, a2, a3) = (−2, 3, 1), b = (b1, b2) = (3,−1), c = (c1, c2) = (5,−1),

where a is for the main diagonal, b is for the diagonal above a, and c is for the diagonal below a. We
apply formulae (20) for n = 3 in order to determine the vectors

l = (l1, l2), r = (r1, r2, r3), s = (s1, s2),
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and to find this way matrices L and R. We have

r1 = −2,

and by si = bi, for 1 ≤ i ≤ 2 we deduce
s = (3,−1).

Then,

l1 =
c1
r1

=
5

−2
= −5

2
, r2 = a2 − l1s1 = 3−

(
−5

2

)
· 3 =

21

2
,

l2 =
c2
r2

= − 2

21
, r3 = a3 − l2s2 = 1−

(
− 2

21

)
· (−1) =

19

21
.

We have obtained

l =

(
−5

2
,− 2

21

)
, r =

(
−2,

21

2
,
19

21

)
,

so

L =

 1 0 0
−5

2 1 0
0 − 2

21 1

 , R =

 −2 3 0
0 21

2 −1
0 0 19

21

 .

Since A = LR, solving the system written in its matrix form, Ax = t, where t =

 1
7
0

 , is equivalent

to solving L(Rx) = t. We denote Rx = y and we notice that we actually have to solve{
Ly = t,
Rx = y.

The matrix equation Ly = t, that is, 1 0 0
−5

2 1 0
0 − 2

21 1

 ·
 y1

y2
y3

 =

 1
7
0

 ,

is equivalent to solving the system 
y1 = 1,

−5
2y1 + y2 = 7

− 2
21y2 + y3 = 0,

We introduce y1 = 1 in the second equation of the system and we obtain y2 = 19
2 . We introduce

y2 = 19
2 in the third equation of the system and we obtain y3 = 19

21 . We have found

y =

 1
19
2
19
21

 .
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We solve now Rx = y, that is, −2 3 0
0 21

2 −1
0 0 19

21

 ·
 x1

x2
x3

 =

 1
19
2
19
21

 .

In fact, we solve 
−2x1 + 3x2 = 1,

21
2 x2 − x3 = 19

2
19
21x3 = 19

21 ,

From the last equation of the system, x3 = 1. We introduce this in the above equation and we obtain
x2 = 1. We introduce this in the above equation and we obtain x1 = 1. Therefore the solution of the
initial system is

x =

 1
1
1

 .

Pseudocode Algorithm
1. read n, ai, 1 ≤ i ≤ n, bi, 1 ≤ i ≤ n− 1, ci, 1 ≤ i ≤ n− 1, ti, 1 ≤ i ≤ n
2. for i = 1, 2, ..., n− 1

2.1. if ai = 0 then
2.1.1. write ’The system does not have a unique solution because the diagonal element

from line ’, i, ’is null.’
2.1.2. exit

2.2. ci ← ci/ai
2.3. ai+1 ← ai+1 − bi · ci

3. for i = 2, 3, ..., n
3.1. ti ← ti − ci−1 · ti−1

4. if an = 0 then
4.1. write ’The system does not have a unique solution because the diagonal element

from line ’, n, ’is null.’
4.2. exit

5. tn ← tn/an
6. for i = n− 1, n− 2, ..., 1

6.1. ti ← (ti − bi · ti+1) /ai
7. write ′xi =′, ti, 1 ≤ i ≤ n.

6 Chio pivotal condensation method for solving determinants

The problem: We consider the matrix A = (aij)1≤i,j≤n ∈ Rn×n and the target is to compute det(A).
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Describing the method: We apply the formula

(23) det(A) =
1

an−211

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣ a11 a13
a21 a23

∣∣∣∣ ...

∣∣∣∣ a11 a1n
a21 a2n

∣∣∣∣
∣∣∣∣ a11 a12
a31 a32

∣∣∣∣ ∣∣∣∣ a11 a13
a31 a33

∣∣∣∣ ...

∣∣∣∣ a11 a1n
a31 a3n

∣∣∣∣
...

... ...
...∣∣∣∣ a11 a12

an1 an2

∣∣∣∣ ∣∣∣∣ a11 a13
an1 an3

∣∣∣∣ ...

∣∣∣∣ a11 a1n
an1 ann

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where a11 6= 0, and we apply again the above formula for n−1, n−2, ... until we obtain a determinant
of order 2.

Remarks:

1. If a11 = 0 and there exists 2 ≤ i ≤ n for which ai1 6= 0, then we switch the rows 1 and i in A, and
we change the sign of det(A).

2. If a11 = 0, ∀2 ≤ i ≤ n, we have ai1 = 0, then det(A) = 0.

Example: Compute the determinant of the following matrices using Chio’s Method:

A =


2 1 0 1
6 3 2 −1
1 2 1 0
1 1 −2 3

 , B =


0 −2 1 0
5 1 −1 3
4 2 2 5
6 1 −3 −1

 .

Solution: a) We first make the calculus for det(A). We apply formula (23) for the determinant of
the square matrix A of order n.

det(A) =

∣∣∣∣∣∣∣∣
2 1 0 1
6 3 2 −1
1 2 1 0
1 1 −2 3

∣∣∣∣∣∣∣∣ =
1

24−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ 2 1
6 3

∣∣∣∣ ∣∣∣∣ 2 0
6 2

∣∣∣∣ ∣∣∣∣ 2 1
6 −1

∣∣∣∣
∣∣∣∣ 2 1

1 2

∣∣∣∣ ∣∣∣∣ 2 0
1 1

∣∣∣∣ ∣∣∣∣ 2 1
1 0

∣∣∣∣
∣∣∣∣ 2 1

1 1

∣∣∣∣ ∣∣∣∣ 2 0
1 −2

∣∣∣∣ ∣∣∣∣ 2 1
1 3

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

4

∣∣∣∣∣∣
0 4 −8
3 2 −1
1 −4 5

∣∣∣∣∣∣ .
By applying formula (23) and by performing the calculus of several determinants of order 2, we have
arrived at the calculus of a determinant of order 3 instead of the initial determinant of order 4. At
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this point we notice that the first element a11 of this determinant of order 3 is zero, so we interchange
the first two rows of the determinant. Therefore,

det(A) =
−1

4

∣∣∣∣∣∣
3 2 −1
0 4 −8
1 −4 5

∣∣∣∣∣∣ .
Now we apply again formula (23):

det(A) =
−1

4 · 33−2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ 3 2
0 4

∣∣∣∣ ∣∣∣∣ 3 −1
0 −8

∣∣∣∣
∣∣∣∣ 3 2

1 −4

∣∣∣∣ ∣∣∣∣ 3 −1
1 5

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
=
−1

12

∣∣∣∣ 12 −24
−14 16

∣∣∣∣ = 12.

b) We now pass to the calculus of det(B). We notice that the first element of the square matrix B
is b11 = 0, thus we interchange the first two rows of the determinant without forgetting to change the
sign of the determinant and then we use again formula (23) for n = 4:

det(B) = −

∣∣∣∣∣∣∣∣
5 1 −1 3
0 −2 1 0
4 2 2 5
6 1 −3 −1

∣∣∣∣∣∣∣∣ =
−1

54−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ 5 1
0 −2

∣∣∣∣ ∣∣∣∣ 5 −1
0 1

∣∣∣∣ ∣∣∣∣ 5 3
0 0

∣∣∣∣
∣∣∣∣ 5 1

4 2

∣∣∣∣ ∣∣∣∣ 5 −1
4 2

∣∣∣∣ ∣∣∣∣ 5 3
4 5

∣∣∣∣
∣∣∣∣ 5 1

6 1

∣∣∣∣ ∣∣∣∣ 5 −1
6 −3

∣∣∣∣ ∣∣∣∣ 5 3
6 −1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
−1

25

∣∣∣∣∣∣
−10 5 0

6 14 13
−1 −9 −23

∣∣∣∣∣∣ .
We have seen once more that, from a determinant of order 4 we have arrived at the calculus of a
determinant of order 3. We apply again (23) for this last determinant and we get

det(B) =
−1

25
· 1

(−10)3−2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ −10 5
6 14

∣∣∣∣ ∣∣∣∣ −10 0
6 13

∣∣∣∣
∣∣∣∣ −10 5
−1 −9

∣∣∣∣ ∣∣∣∣ −10 0
−1 −23

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
=

=
1

250

∣∣∣∣ −170 −130
95 230

∣∣∣∣ =
−39100 + 12350

250
= −107.
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Pseudocode Algorithm
1. read n, aij , 1 ≤ i, j ≤ n
2. det← 1
3. repeat

3.1. if a11 = 0 then
3.1.1. i← 2
3.1.2. while (i ≤ n) and (ai1 = 0)

3.1.2.1. i← i+ 1
3.1.3. if i > n then

3.1.3.1. write ′det(A) = 0 ′

3.1.3.2. exit
3.1.4. for j = 1, 2, ..., n

3.1.4.1. swap a1j with aij
3.1.5. det← −det

3.2. for i = 1, 2, ..., n− 2
3.2.1. det← det · a11

3.3. for i = 2, 3, ..., n
3.3.1. for j = 2, 3, ..., n

3.3.1.1. aij ← aij · a11 − ai1 · a1j
3.4. n← n− 1
3.5. for i = 1, 2, ..., n

3.5.1. for j = 1, 2, ..., n
3.5.1.1. aij ← ai+1,j+1

until (n = 1)
4. det← a11/det
5. write ′det(A) =′, det.

7 Jacobi’s Method

The problem: We consider the linear system

(24) A · x = b,

where A ∈ Mn (R) is the matrix associated to system (24) and b ∈ Rn is the vector containing the
free terms of system (24).
Our goal is to determine, if possible, x ∈ Rn, where x represents the unique solution of system (24).

Describing the method: We take x(0) ∈ Rn to be the initial approximation of the solution of the
system (24), arbitrarily chosen (for example the null vector). Based on x(0) we obtain x(1), based on
x(1) we obtain x(2), based on x(2) we obtain x(3) etc. We do that by applying the following formulae:

x
(k+1)
i =

bi − n∑
j=1
j 6=i

aijx
(k)
j

/aii, 1 ≤ i ≤ n, k ≥ 0,

until
dist

(
x(k+1) − x(k)

)
= max

1≤i≤n

∣∣∣x(k+1)
i − x(k)i

∣∣∣ ≤ ε,
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where ε is the error that we consider acceptable when we try to approximate the exact solution of the
system (24). Then x w x(k+1).
Remark: A sufficient condition to obtain the solution of system (24) within the error ε is the following:
the matrix A should be strictly diagonally dominant on rows or on columns.

Example: Using Jacobi’s method, solve the following system within the error 10−2.
5x1 − 3x2 − x3 = 5
−2x1 + 4x2 + x3 = 0
2x1 − 2x2 − 5x3 = −3.

Proof. We have that

A =

 5 −3 −1
−2 4 1
2 −2 −5

 and b =

 5
0
−3

 .

We check if the matrix A is strictly diagonal dominant on rows :
|a11| = 5
|a12|+ |a13| = | − 3|+ | − 1| = 4

}
⇒ |a11| > |a12|+ |a13|

|a22| = 4
|a21|+ |a23| = | − 2|+ |1| = 3

}
⇒ |a22| > |a21|+ |a23|

|a33| = 5
|a31|+ |a33| = |2|+ | − 2| = 4

}
⇒ |a33| > |a31|+ |a32|.

So, the matrix A is strictly diagonal dominant on rows, and we can be sure that the Jacobi’s method
enables us to obtain an approximation of the solution with the desired precision. As a simple obser-
vation, we remark that A is not strictly diagonal dominant on columns.

We write the initial system in an equivalent form
x1 = (5 + 3x2 + x3)/5
x2 = (2x1 − x3)/4
x3 = (−3− 2x1 + 2x2)/(−5).

We choose arbitrarily the initial approximation x(0) =

 x
(0)
1

x
(0)
2

x
(0)
3

 =

 0
0
0

, and we consider the

recurrence 
x
(k+1)
1 =

(
5 + 3x

(k)
2 + x

(k)
3

)
/5

x
(k+1)
2 =

(
2x

(k)
1 − x

(k)
3

)
/4

x
(k+1)
3 =

(
−3− 2x

(k)
1 + 2x

(k)
2

)
/(−5).
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For k = 0 we obtain
x
(1)
1 =

(
5 + 3x

(0)
2 + x

(0)
3

)
/5 = (5 + 3 · 0 + 0) /5 = 1

x
(1)
2 =

(
2x

(0)
1 − x

(0)
3

)
/4 = (2 · 0− 0) /4 = 0

x
(1)
3 =

(
−3− 2x

(0)
1 + 2x

(0)
2

)
/(−5) = (−3− 2 · 0 + 2 · 0) /(−5) = 0.6.

We check the stop condition

d
(
x(1) − x(0)

)
= max

1≤i≤3

∣∣∣x(1)i − x(0)i ∣∣∣ = max
{∣∣∣x(1)1 − x

(0)
1

∣∣∣ , ∣∣∣x(1)2 − x
(0)
2

∣∣∣ , ∣∣∣x(1)3 − x
(0)
3

∣∣∣} =

= max {|1− 0|, |0− 0|, |0.6− 0|} = 1 > ε = 0.01.

For k = 1 we get
x
(2)
1 =

(
5 + 3x

(1)
2 + x

(1)
3

)
/5 = (5 + 3 · 0 + 0.6) /5 = 1.12

x
(2)
2 =

(
2x

(1)
1 − x

(1)
3

)
/4 = (2 · 1− 0.6) /4 = 0.35

x
(2)
3 =

(
−3− 2x

(1)
1 + 2x

(1)
2

)
/(−5) = (−3− 2 · 1 + 2 · 0) /(−5) = 1.

We check the stop condition

d
(
x(2) − x(1)

)
= max

1≤i≤3

∣∣∣x(2)i − x(1)i ∣∣∣ = max
{∣∣∣x(2)1 − x

(1)
1

∣∣∣ , ∣∣∣x(2)2 − x
(1)
2

∣∣∣ , ∣∣∣x(2)3 − x
(1)
3

∣∣∣} =

= max {|1.12− 1|, |0.35− 0|, |1− 0.6|} = 0.4 > ε = 0.01.

For k = 2 we obtain
x
(3)
1 =

(
5 + 3x

(2)
2 + x

(2)
3

)
/5 = (5 + 3 · 0.35 + 1) /5 = 1.41

x
(3)
2 =

(
2x

(2)
1 − x

(2)
3

)
/4 = (2 · 1.12− 1) /4 = 0.31

x
(3)
3 =

(
−3− 2x

(2)
1 + 2x

(2)
2

)
/(−5) = (−3− 2 · 1.12 + 2 · 0.35) /(−5) = 0.908.

We check the stop condition

d
(
x(3) − x(2)

)
= max

1≤i≤3

∣∣∣x(3)i − x(2)i ∣∣∣ = max
{∣∣∣x(3)1 − x

(2)
1

∣∣∣ , ∣∣∣x(3)2 − x
(2)
2

∣∣∣ , ∣∣∣x(3)3 − x
(2)
3

∣∣∣} =

= max {|1.41− 1.12|, |0.31− 0.35|, |0.908− 1|} = 0.19 > ε = 0.01.

...

Using the above reasoning we obtain the solution with precision given by ε = 0.01 at the step 14
x
(14)
1 = 1.495639

x
(14)
2 = 0.503865

x
(14)
3 = 1.004191.

The exact solution of the system is

 x1
x2
x3

 =

 1.5
0.5
1

.

28



Pseudocode Algorithm
1. read n, aij , 1 ≤ i, j ≤ n, bi, 1 ≤ i ≤ n, ε, itmax, xi, 1 ≤ i ≤ n
2. it← 0
3. repeat

3.1. max← 0
3.2. for i = 1, 2, ..., n

3.2.1. S ← 0
3.2.2. for j = 1, 2, ..., n

3.2.2.1. if j 6= i then
3.2.2.1.1. S ← S + aij · xj

3.2.3. yi ← (bi − S)/aii
3.2.4. if max < |yi − xi| then

3.2.4.1. max← |yi − xi|
3.3. for i = 1, 2, ..., n

3.3.1. xi ← yi
3.4. it← it+ 1

until (max ≤ ε) or (it > itmax)
4. if it > itmax then

4.1. write ’We cannot obtain the solution in’, itmax, ’iterations, with precision’, ε
4.2. exit

5. write (’The approximation of the solution found in ’,it, ’iterations within error’,ε, ’is’, xi, 1 ≤ i ≤ n)

Exercise: Complete the above algorithm such that one can check whether the matrix of the system
is strictly diagonal dominant on rows or columns.

8 Solving linear systems – Seidel-Gauss Method

The problem: We consider the linear system

(25) A · x = b,

where A ∈ Mn (R) is the matrix associated to system (25) and b ∈ Rn is the vector containing the
free terms of system (25).
Our goal is to determine, if possible, x ∈ Rn, where x represents the unique solution of system (25).

Describing the method: We take x(0) ∈ Rn to be the initial approximation of the solution of the
system (25), arbitrarily chosen (for example the null vector). Based on x(0) we obtain x(1), based on
x(1) we obtain x(2), based on x(2) we obtain x(3) etc. We do that by applying the following formulae:

x
(k+1)
i =

ti − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

/aii, 1 ≤ i ≤ n, k ≥ 0,

until
max
1≤i≤n

∣∣∣x(k+1)
i − x(k)i

∣∣∣ ≤ ε,
where ε is the error that we consider acceptable when we try to approximate the exact solution of the
system (25). Then x ' x(k+1).
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Remarks:

1. A sufficient condition to obtain the solution of system (25) within the error ε is the following: the
matrix A should be strictly diagonally dominant on rows or on columns.

2. Another sufficient condition to obtain the solution of system (25) within the error ε is that the
matrix A associated to the system is symmetric and positive-definite.

Example: Using the Seidel-Gauss method, solve the following system with precision given by ε =
10−2: 

5x1 − 3x2 − x3 = 5
−2x1 + 4x2 + x3 = 0
2x1 − 2x2 − 5x3 = −3.

Proof. We have

A =

 5 −3 −1
−2 4 1
2 −2 −5

 and b =

 5
0
−3

 .

We remark that matrix A is strictly diagonally dominant, hence the Seidel-Gauss method works.

We write the initial system into the following form:
x1 = (5 + 3x2 + x3)/5
x2 = (2x1 − x3)/4
x3 = (−3− 2x1 + 2x2)/(−5).

We choose an arbitrary x(0) =

 x
(0)
1

x
(0)
2

x
(0)
3

 =

 0
0
0

 as an initial approximation of the solution and we

consider the recurrence 
x
(k+1)
1 =

(
5 + 3x

(k)
2 + x

(k)
3

)
/5

x
(k+1)
2 =

(
2x

(k+1)
1 − x(k)3

)
/4

x
(k+1)
3 =

(
−3− 2x

(k+1)
1 + 2x

(k+1)
2

)
/(−5).

For k = 0 we obtain
x
(1)
1 =

(
5 + 3x

(0)
2 + x

(0)
3

)
/5 = (5 + 3 · 0 + 0) /5 = 1

x
(1)
2 =

(
2x

(1)
1 − x

(0)
3

)
/4 = (2 · 1− 0) /4 = 0.5

x
(1)
3 =

(
−3− 2x

(1)
1 + 2x

(1)
2

)
/(−5) = (−3− 2 · 1 + 2 · 0.5) /(−5) = 0.8.

We check the stop condition

d
(
x(1) − x(0)

)
= max

1≤i≤3

∣∣∣x(1)i − x(0)i ∣∣∣ = max
{∣∣∣x(1)1 − x

(0)
1

∣∣∣ , ∣∣∣x(1)2 − x
(0)
2

∣∣∣ , ∣∣∣x(1)3 − x
(0)
3

∣∣∣} =

= max {|1− 0|, |0.5− 0|, |0.8− 0|} = 1 > ε = 0.01.
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For k = 1 we obtain
x
(2)
1 =

(
5 + 3x

(1)
2 + x

(1)
3

)
/5 = (5 + 3 · 0.5 + 0.8) /5 = 1.46

x
(2)
2 =

(
2x

(2)
1 − x

(1)
3

)
/4 = (2 · 1.46− 0.8) /4 = 0.53

x
(2)
3 =

(
−3− 2x

(2)
1 + 2x

(2)
2

)
/(−5) = (−3− 2 · 1.46 + 2 · 0.53) /(−5) = 0.972.

We check the stop condition

d
(
x(2) − x(1)

)
= max

1≤i≤3

∣∣∣x(2)i − x(1)i ∣∣∣ = max
{∣∣∣x(2)1 − x

(1)
1

∣∣∣ , ∣∣∣x(2)2 − x
(1)
2

∣∣∣ , ∣∣∣x(2)3 − x
(1)
3

∣∣∣} =

= max {|1.46− 1|, |0.53− 0.5|, |0.972− 0.8|} = 0.46 > ε = 0.01.

For k = 2 we obtain
x
(3)
1 =

(
5 + 3x

(2)
2 + x

(2)
3

)
/5 = (5 + 3 · 0.53 + 0.972) /5 = 1.5124

x
(3)
2 =

(
2x

(3)
1 − x

(2)
3

)
/4 = (2 · 1.5124− 0.972) /4 = 0.5132

x
(3)
3 =

(
−3− 2x

(3)
1 + 2x

(3)
2

)
/(−5) = (−3− 2 · 1.5124 + 2 · 0.5132) /(−5) = 0.99968.

We check the stop condition

d
(
x(3) − x(2)

)
= max

1≤i≤3

∣∣∣x(3)i − x(2)i ∣∣∣ = max
{∣∣∣x(3)1 − x

(2)
1

∣∣∣ , ∣∣∣x(3)2 − x
(2)
2

∣∣∣ , ∣∣∣x(3)3 − x
(2)
3

∣∣∣} =

= max {|1.5124− 1.46|, |0.5132− 0.53|, |0.99968− 0.972|} = 0.0524 > ε = 0.01.

For k = 3 we obtain
x
(4)
1 =

(
5 + 3x

(3)
2 + x

(3)
3

)
/5 = (5 + 3 · 0.5124 + 0.99968) /5 = 1.507856

x
(4)
2 =

(
2x

(4)
1 − x

(3)
3

)
/4 = (2 · 1.507856− 0.99968) /4 = 0.504008

x
(4)
3 =

(
−3− 2x

(4)
1 + 2x

(4)
2

)
/(−5) = (−3− 2 · 1.507856 + 2 · 0.504008) /(−5) = 1.001539.

We check the stop condition

d
(
x(4) − x(3)

)
= max

1≤i≤3

∣∣∣x(4)i − x(3)i ∣∣∣ = max
{∣∣∣x(4)1 − x

(3)
1

∣∣∣ , ∣∣∣x(4)2 − x
(3)
2

∣∣∣ , ∣∣∣x(4)3 − x
(3
3

∣∣∣} =

= max {|1.507856− 1.5124|, |0.504008− 0.5132|, |1.001539− 0.99968|} = 0.009192 < ε = 0.01.

Thus an approximation of the solution of the system of precision given by ε = 10−2 is the following
x
(4)
1 = 1.507856

x
(4)
2 = 0.504008

x
(4)
3 = 1.001539.

Notice that, by using Seidel-Gauss method, we have obtain the solution of this system within the error
10−2 at step 4, as opposed to Jacobi’s method, when we needed 14 steps.

Exercise. Based on what you understood from the above solved example and from the description
of the Seidel-Gauss method, modify the algorithm used for Jacobi method in order to obtain the
algorithm for Seidel-Gauss method.
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9 Solving nonlinear equations – The method of successive approxi-
mations

The problem: We consider the equation

(26) f(x) = 0,

where f : [a, b]→ R, f ∈ C2([a, b]). Our goal is to approximate the solution x∗ ∈ [a, b] of the equation
(26).

Describing the method: The method of successive approximations consists in the transformation
of the equation (26) in an equivalent form

x = g(x).

We construct the sequence (xn)n≥0, given by

(27) xn+1 = g(xn), n ≥ 0,

where x0 is the initial approximation of the solution x∗.

Remarks

1. To ensure the convergence of the sequence (27) a sufficient condition is to take g to be contraction
on the interval [a, b].

2. If g is differentiable on [a, b], then g is a contraction if and only if

|g′(x)| ≤ q < 1, ∀x ∈ [a, b].

3. As a stop criterion we will use

|xn+1 − xn| ≤ ε⇒ xn+1 ' x∗,

where ε is the error that we consider acceptable.

Example 1. Use the method of the successive approximations to determine the root of the equation

x = 4
√
x+ 2,

with precision ε = 10−2.

Solution: We consider the function

f(x) = x− 4
√
x+ 2, x ≥ 0.

We search a, b such that f(a)f(b) < 0.

f(0) = − 4
√

2 < 0,
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f(1) = 1− 4
√

3 < 0,

f(2) = 2− 4
√

4 = 2−
√

2 > 0.

So, the root of our equation is in the interval x∗ ∈ [1, 2].

We write the equation in an equivalent form

x = g(x),

where g(x) = 4
√
x+ 2, x ∈ [1, 2].

We prove that g is a contraction on the interval [1, 2], i.e. |g′(x)| < 1, for every x ∈ [1, 2]. We have
that ∣∣g′(x)

∣∣ =

∣∣∣∣14(x+ 2)−
3
4

∣∣∣∣ =
1

4 4
√
x+ 2

3 ≤
1

4 4
√

1 + 2
3 < 1, for every x ∈ [1, 2],

therefore, g is a contraction on[1, 2].

We can take x0 ∈ [1, 2] arbitrarily. We choose x0 = 2 and we use the recurrence

xn+1 = g(xn)⇔ xn+1 = 4
√
xn + 2, n ≥ 0.

For n = 0, we get
x1 = g(x0) = 4

√
x0 + 2 =

4
√

4 =
√

2

We check the stop condition:
|x1 − x0| > ε = 0.01,

since |x1 − x0| ' 0.585786. For n = 1, we have

x2 = g(x1) = 4
√
x1 + 2 =

4

√√
2 + 2.

We check the stop condition:
|x2 − x1| > ε = 0.01

since |x2 − x1| ' 0.054891. For n = 2, we have

x3 = g(x2) =
4

√
4

√√
2 + 2 + 2.

We check the stop condition:
|x3 − x2| < ε = 0.01

since |x3 − x2| ' 0.005497. So,

x3 =
4

√
4

√√
2 + 2 + 2 ' 1.353826,

aproximates the solution of our equation within error ε = 10−2 (that is, with one exact decimal).
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Pseudocode Algorithm
1. read x0, ε, itmax; declare g
2. it← 0
3. repeat

3.1. x1 ← g(x0)
3.2. dif ← |x1 − x0|
3.3. x0 ← x1
3.4. it← it+ 1

until (dif ≤ ε) or (it > itmax)
4. if it > itmax then

4.1. write ’Cannot obtain the solution in’, itmax, ’iterations, within error’, ε
4.2. exit

5. write (’The approximation of the solution found in ’,it, ’iterations within error’,ε, ’is’, x1).

Remark: In C, C++, the function g(x) = 4√
x+3

may be declared as:

float f(float x)
{

return 4./sqrt(x+3);
}

Function In C or C++

√
x sqrt(x)

3
√
x cbrt(x)

7
√
x pow(x, 1./7)

ex exp(x)

ax pow(a,x)

lnx log(x)

loga x = lnx
ln a log(x)/log(a)

10 Krylov’s method for finding the coefficients of the characteristic
polynomial

Describing the problem: We consider the matrix A ∈Mn. Our goal is to determine the coefficients
of the characteristic polynomial associated to this matrix

pA(λ) = λn + c1λ
n−1 + ...+ cn−1λ+ cn.

The method:
1)We choose y(0) 6= 0 ∈ Rn arbitrarily;
2) We compute

y(k) = Ay(k−1), 1 ≤ k ≤ n
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3) We solve the linear system

(28)
(
y(n−1)y(n−2)...y(1)y(0)

)
·


c1
c2
...
cn

 = −y(n).

Remarks: i) If the system (28) does not have a unique solution, then we choose another y(0) 6= 0 ∈ Rn
and we restart the algorithm.
ii) If the system (28) has unique solution, then the components of the solution, c1, c2, ...cn, are the
coefficients of characteristic polynomial. However, one must not forget the coefficient of λn which is
c0 = 1.

Example: Using Krylov’s method, determine the eigenvalues and eigenvectors corresponding to the
matrix

A =

 3 3 −1
1 3 −1
2 3 0

 .

Is the matrix A invertible? If so, determine the inverse of A, using Krylov’s method.

Proof. Step 1. We choose arbitrarily y(0) =

 1
0
0

 6=
 0

0
0

 , and we consider the vectorial recur-

rence
y(k+1) = A · y(k), 0 ≤ k ≤ 2.

Step 2. We compute y(1) and y(2)

y(1) = A · y(0) =

 3 3 −1
1 3 −1
2 3 0

 1
0
0

 =

 3
1
2

 ,

y(2) = A · y(1) =

 3 3 −1
1 3 −1
2 3 0

 3
1
2

 =

 10
4
9

 .

Step 3. We test if det(B) 6= 0, where B =
(
y(2)y(1)y(0)

)
=

 10 3 1
4 1 0
9 2 0

. We notice that det(B) =

−1 6= 0 and we move further.
Step 4. We compute y(3)

y(3) = A · y(2) =

 3 3 −1
1 3 −1
2 3 0

 10
4
9

 =

 33
13
32

 .

We solve the linear system

B ·

 c1
c2
c3

 = −y(3),
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which is equivalent to

(29)

 10 3 1
4 1 0
9 2 0

 c1
c2
c3

 = −

 33
13
32

 .

We note that

 c1
c2
c3

 is the vector which contains the coefficients of the characteristic polynomial.

We write the system (29) in an equivalent form
10c1 + 3c2 + c3 = −33
4c1 + c2 = −13
9c1 + 2c2 = −32

⇒


c1 = −6
c2 = 11
c3 = −6.

Step 5. The characteristic polynomial corresponding to the matrix A is

pA(λ) = λ3 + c1λ
2 + c2λ+ c3 = λ3 − 6λ2 + 11λ− 6.

To determine the eigenvalues, we solve the following equation

pA(λ) = 0⇔ λ3 − 6λ2 + 11λ− 6 = 0.

We notice that this is a polynomial of integer coefficients. Thus, if pA admits rational roots, these
must be in the set D6 = {±1, ±2, ±3, ±6}. We test these values to see if any of them is a root of pA.
Since

pA(1) = 1− 6 + 11− 6 = 0,

we deduce that λ1 = 1. Next we could test the other values to see if any of them is an eigenvalue as
well, or we could divide pA(λ) by (λ − 1), or we could apply Horner’s rule for polynomials etc. For
generality, we usually apply Horner’s rule or we divide the polynomial by (λ− λ1). We get

pA(λ) = (λ− 1)(λ2 − 5λ+ 6).

Solving λ2 − 5λ+ 6 = 0 we obtain λ2 = 2 and λ3 = 3.
Step 6. Since the eigenvalues are distinct real number, Krylov’s method allows us to compute the
eigenvectors.

For the eigenvalue λ1 = 1, we compute

q1(λ) =
pA(λ)

λ− λ1
= (λ− 2)(λ− 3) = λ2 − 5λ+ 6.

An eigenvector corresponding to eigenvalue λ1 = 1 is

y(2) − 5y(1) + 6y(0) =

 10
4
9

− 5

 3
1
2

+ 6

 1
0
0

 =

 1
−1
−1

 .

For the eigenvalue λ2 = 2, we compute

q2(λ) =
pA(λ)

λ− λ2
= (λ− 1)(λ− 3) = λ2 − 4λ+ 3.
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An eigenvector corresponding to the eigenvalue λ2 = 2 is

y(2) − 4y(1) + 3y(0) =

 10
4
9

− 4

 3
1
2

+ 3

 1
0
0

 =

 1
0
1

 .

For the eigenvalue λ3 = 3, we compute

q3(λ) =
pA(λ)

λ− λ3
= (λ− 1)(λ− 2) = λ2 − 3λ+ 2.

An eigenvector corresponding to the eigenvalue λ3 = 3 is

y(2) − 3y(1) + 2y(0) =

 10
4
9

− 3

 3
1
2

+ 2

 1
0
0

 =

 3
1
3

 .

Step 7. Moreover, since the free term of the characteristic polynomial c3 = −10 is nonzero, then the
matrix A is invertible and its inverse is given by the formula

A−1 = − 1

c3
(A2 + c1A+ c2I3) =

1

6
(A2 − 6A+ 11I3) =

=
1

6

 10 15 −6
4 9 −4
9 15 −5

− 6

 3 3 −1
1 3 −1
2 3 0

+ 11

 1 0 0
0 1 0
0 0 1

 =
1

6

 3 −3 0
−2 2 2
−3 −3 6

 .

Remark. We will provide the pseudocode algorithm only for finding the coefficients of the charac-
teristic polynomial. For the rest of the calculus we should combine this algorithm with other methods,
such is Bairstow method for finding the roots of a polynomial etc.

Pseudocode Algorithm
1. read n, aij , 1 ≤ i, j ≤ n
2. pasul2: read bi,n, 1 ≤ i ≤ n {represents y(0) 6= 0n}
// we compute y(1), y(2), ..., y(n−1), using the formula y(k) = A · y(k−1), 1 ≤ k ≤ n
3. for j = n− 1, n− 2, ..., 1

3.1. for i = 1, 2, ..., n
3.1.1. bij ← 0
3.1.2. for k = 1, 2, ..., n

3.1.2.1. bij ← bij + aik · bk,j+1

// compute y(n), using y(n) = A · y(n−1), and we put −y(n)
4. for i = 1, 2, ..., n

4.1. bi,n+1 ← 0
4.2. for k = 1, 2, ..., n

4.2.1. bi,n+1 ← bi,n+1 + aik · bk1
4.1. bi,n+1 ← −bi,n+1

// we solve the system with augmented matrix (bij) 1≤i≤n
1≤j≤n+1

, using one of the methods previously studied:
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• Gauss method whit partial pivoting at every step

• LR Factorization (Doolitlle)

and then we write the coefficients of the characteristic polynomial (without forgetting c0 = 1).

Remark. When solving the linear system from above, if we find out that the solution is not unique,
instead of exiting the program we could put

goto pasul2;

which will allow us to go back and choose another y(0) 6= 0n. In fact, one can check whether the
determinant of B is zero (that is, fabs(det) < 0.00001) by using Chio’s Method. In case det B=0, we
put goto pasul2; (and this means that we do not need to insert this inside Gauss or LR). Otherwise
we move further.

11 Fadeev’s method for finding the coefficients of the characteristic
polynomial

The problem: We consider the matrix A ∈ Mn(R). Our goal is to determine the coefficients of the
characteristic polynomial

pA(λ) = λn + c1λ
n−1 + ...+ cn−1λ+ cn,

associated to the matrix A.

Describing the method: The coefficients are determined using the formulae:
1)A1 = A; c1 = −Tr(A1); B1 = c1In +A1;
2)A2 = AB1; c2 = −Tr(A2)/2; B2 = c2In +A2;
...
n)An = ABn−1; cn = −Tr(An)/n; Bn = cnIn +An.

Remarks:
1) Bn = On (that is, the null matrix), so there is no need to be calculated.
2) If cn 6= 0⇒ A−1 = − 1

cn
Bn−1.

Example: Using the Fadeev’s method, determine the characteristic polynomial corresponding to the
matrix

A =

 2 1 −1
2 1 1
−3 0 0

 .

Is the matrix A invertible? If so, please determine the inverse matrix A−1, using Fadeev’s method.

Proof. Step 1:

A1 = A =

 2 1 −1
2 1 1
−3 0 0

 ,
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c1 = −Tr(A1)/1 = −(2 + 1 + 0)/1 = −3,

B1 = c1I3 +A1 = −3

 1 0 0
0 1 0
0 0 1

+

 2 1 −1
2 1 1
−3 0 0

 =

 −1 1 −1
2 −2 1
−3 0 −3

 .

Step 2:

A2 = AB1 =

 2 1 −1
2 1 1
−3 0 0

 −1 1 −1
2 −2 1
−3 0 −3

 =

 3 0 2
−3 0 −4
3 −3 3


c2 = −Tr(A2)/2 = −(3 + 0 + 3)/2 = −3,

B2 = c2I3 +A2 = −3

 1 0 0
0 1 0
0 0 1

+

 3 0 2
−3 0 −4
3 −3 3

 =

 0 0 2
−3 −3 −4
3 −3 0

 .

Step 3:

A3 = AB2 =

 2 1 −1
2 1 1
−3 0 0

 0 0 2
−3 −3 −4
3 −3 0

 =

 −6 0 0
0 −6 0
0 0 −6

 ,

c3 = −Tr(A3)/3 = −(−6− 6− 6)/3 = 6,

B3 = c3I3 +A3 = 6

 1 0 0
0 1 0
0 0 1

+

 −6 0 0
0 −6 0
0 0 −6

 = O3.

The characteristic polynomial corresponding to the matrix A is

pA(λ) = λ3 + c1λ
2 + c2λ+ c3 = λ3 − 3λ2 − 3λ+ 6.

Moreover, since the free term of the characteristic polynomial c3 = 6 is nonzero, then the matrix A is
invertible and the corresponding inverse matrix is given by the formula

A(−1) = − 1

c3
B2 = −1

6

 0 0 2
−3 −3 −4
3 −3 0

 .

Remark: In the pseudocode algorithm, the role of Ak will be played by matrix D.

Pseudocode Algorithm
1. read n, aij , 1 ≤ i, j ≤ n
// initialize B with unit matrix In
2. for i = 1, 2, ..., n

2.1. for j = 1, 2, ..., n
2.1.1. if i = j then

2.1.1.1. bij ← 1
else
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2.1.1.2. bij ← 0
3. for k = 1, 2, ..., n− 1
// we compute the elements of Ak, using Ak = A ·Bk−1, and denote D = Ak

3.1. for i = 1, 2, ..., n
3.1.1. for j = 1, 2, ..., n

3.1.1.1. dij ← 0
3.1.1.2. for h = 1, 2, ..., n

3.1.1.2.1. dij ← dij + aih · bhj
// we compute the coefficients ck, using ck = −Tr(Ak)/k

3.2. ck ← 0
3.3. for i = 1, 2, ..., n

3.3.1. ck ← ck + dii
3.4. ck ← −ck/k

// we compute the elements of the matrix Bk, using Bk = ck · In +Ak
3.5. for i = 1, 2, ..., n

3.5.1. for j = 1, 2, ..., n
3.5.1.1. if i = j then

3.5.1.1.1. bij ← dij + ck
else

3.5.1.1.2. bij ← dij
// compute An = D
4. for i = 1, 2, ..., n

4.1. for j = 1, 2, ..., n
4.1.1. dij ← 0
4.1.2. for h = 1, 2, ..., n

4.1.2.1. dij ← dij + aih · bhj
// compute cn = −Tr(An)/n
5. cn ← 0
6. for i = 1, 2, ..., n

6.1. cn ← cn + dii
7. cn ← −cn/n
8. if cn = 0 then

8.1. write ’The matrix is not invertible.’
else

8.2. write ’The inverse matrix is’
8.3. for i = 1, 2, ..., n

8.3.1. for j = 1, 2, ..., n
8.3.1.1. write −bij/cn

9. c0 = 1
10. write ’ The coefficients of the characteristic polynomial are’, ci, 0 ≤ i ≤ n

12 Lagrange interpolation polynomial

Presentation of the problem: Let:
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x0 < x1 < ... < xn ∈ R interpolation nodes;
fi = f(xi), 0 ≤ i ≤ n, given values of the function f in the interpolation nodes;
z ∈ R, with z ∈ [x0, xn].

Our goal is to approximate f(z), using the Lagrange interpolation polynomial on the nodes x0, x1, ..., xn.

Presentation of the method:

f(z) ∼=
n∑
k=0

fk ·
n∏

i=0
i6=k

z − xi
xk − xi

,

where

L(x) =

n∑
k=0

fk ·
n∏

i=0
i6=k

x− xi
xk − xi

,

is the Lagrange interpolation polynomial on the nodes x0, x1, ..., xn.

Remark: do(L) ≤ n.

Pseudocode Algorithm
1. read n, xi, 0 ≤ i ≤ n, fi, 0 ≤ i ≤ n, z
2. L← 0
3. for k = 0, 1, .., n

3.1. P ← 1
3.2. for i = 0, 1, .., n

3.2.1. if i 6= k then
3.2.1.1. P ← P · (z − xi)/(xk − xi)

3.3. L← L+ fk · P
4. write ’The approximative value of the function f in ’, z, ’is’, L

The above algorithm can be completed taking into account the following remarks:
1) if z /∈ [x0, xn], we can not approximate f in z;
2) if ∃ i ∈ {0, 1, .., n}, such that z = xi, then we will display the corresponding value of L (without to
compute the sum);
3) the evaluation of the Lagrange polynomial can be done in z1, z2, ..., zn ∈ [x0, xn];
4) if ∃ i ∈ {0, 1, .., n}, such that fi = 0, then is not taken into account, in sum, the therm which
contains fi = 0.

Example 1. Let be the table

xi -1 −2
3 0 2

3 1

fi 0 1
2 1 1

2 0

a) Determine the Lagrange interpolation polynomial which interpolates the above dates;
b) Evaluate f

(
−1

2

)
, f
(
1
3

)
, f (0) and f (2).

Solution: We remark that the above dates correspond the function f(x) = cos
(
πx
2

)
, x ∈ [−1, 1].

We have n = 4 and

x0 = −1, x1 = −2

3
, x2 = 0, x3 =

2

3
, x4 = 1,
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f0 = 0, f1 =
1

2
, f2 = 1, f3 =

1

2
, f4 = 0.

The Lagrange interpolation polynomial is

L(x) = f0l0(x) + f1l1(x) + f2l2(x) + f3l3(x) + f4l4(x), x ∈ [−1, 1],

(30) ⇔ L(x) = 0 · l0(x) +
1

2
· l1(x) + 1 · l2(x) +

1

2
· l3(x) + 0 · l4(x), x ∈ [−1, 1],

where the Lagrange fundamental polynomials lk(x), 0 ≤ k ≤ 4, are determined using the formula

lk(x) =
4∏

i=0
i 6=k

x− xi
xk − xi

, 0 ≤ k ≤ 4.

Since f = 0 and f4 = 0, is not necessary to compute l0(x) and l4(x). In what follows we determine
the Lagrange fundamental polynomials l1(x), l2(x) and l3(x). We have

l1(x) =
(x− x0)(x− x2)(x− x3)(x− x4)

(x1 − x0)(x1 − x2)(x1 − x3)(x1 − x4)
=

(x+ 1) (x− 0)
(
x− 2

3

)
(x− 1)(

−2
3 + 1

) (
−2

3 − 0
) (
−2

3 −
2
3

) (
−2

3 − 1
) =

= −27

40
x(x+ 1)(x− 1)(3x− 2),

l2(x) =
(x− x0)(x− x1)(x− x3)(x− x4)

(x2 − x0)(x2 − x1)(x2 − x3)(x2 − x4)
=

(x+ 1)
(
x+ 2

3

) (
x− 2

3

)
(x− 1)

(0 + 1)
(
0 + 2

3

) (
0− 2

3

)
(0− 1)

=

=
1

4
(x+ 1)(3x+ 2)(3x− 2)(x− 1),

l3(x) =
(x− x0)(x− x1)(x− x2)(x− x4)

(x3 − x0)(x3 − x1)(x3 − x2)(x3 − x4)
=

(x+ 1)
(
x+ 2

3

)
(x− 0) (x− 1)(

2
3 + 1

) (
2
3 + 2

3

) (
2
3 − 0

) (
2
3 − 1

) =

= −27

40
x(x+ 1)(3x+ 2)(x− 1).

From relation (30) we get

L(x) =
1

2
·
(
−27

40

)
x(x+1)(x−1)(3x−2)+

1

4
(x+1)(3x+2)(3x−2)(x−1)+

1

2
·
(
−27

40

)
x(x+1)(3x+2)(x−1) =

= (x2 − 1)

(
9

40
x2 − 1

)
=

9

40
x4 − 49

40
x2 + 1

b) From a) we have

f
(
−1

2

)
= L

(
−1

2

)
= 9

40

(
−1

2

)4 − 49
40

(
−1

2

)2
+ 1 = 0.777380,

f
(
1
3

)
= L

(
1
3

)
= 9

40

(
1
3

)4 − 49
40

(
1
3

)2
+ 1 = 0.866666,

f(0) = f(x2) = f2 = 1,
f(2) cannot be evaluated, since 2 /∈ [−1, 1].

Example 2. Let be the table
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xi 0 1
6

1
2 1

fi 0 1
2 1 0

Evaluate f(z), using the Lagrange interpolation polynomial on the above nodes, where:
z ∈ {14 ; 1

3 ; 1
2 ; 2}.

Sol: 1
6 ' 0.166666; f(14) = 0.693752; f(13) = 0.844444;

Example 3. Let be the table

xi -1 0 2 3 4

fi -0.3 0.2 0 1.1 1.8

a) Evaluate f(z), using the Lagrange interpolation polynomial on the above nodes, where:
z ∈ {−2;−1.05;−0.5; 0; 1; 2; 2.995; 4; 67}.
b) Evaluate f(−0.5) and f(1) using a Lagrange interpolation polynomial of degree 2.
Sol: a) f(−0.5) = 0.225, f(1) = −0.24, f(2.995) = 1.093846

13 Newton interpolation polynomial

Presentation of the problem: Let:
x0 < x1 < ... < xn ∈ R interpolation nodes;
fi = f(xi), 0 ≤ i ≤ n, given values of the function f in the interpolation nodes;
z ∈ R, with z ∈ [x0, xn].

Our goal is to approximate f(z), using the Newton interpolation polynomial on the nodes x0, x1, ..., xn.

Presentation of the method:

f(z) ∼= f [x0] +
n∑
k=1

f [x0;x1; ...;xk] ·
k−1∏
i=0

(z − xi),

where

N(x) = f [x0] +

n∑
k=1

f [x0;x1; ...;xk] ·
k−1∏
i=0

(x− xi),

is the Newton interpolation polynomial on the nodes x0, x1, ..., xn and

f [x0] = f0,

f [x0;x1; ...;xk] =

k∑
j=0

fj
k∏

i=0
i 6=j

(xj − xi)

, 1 ≤ k ≤ n.

Remark: do(N) ≤ n.

Pseudocode Algorithm
1. read n, xi, 0 ≤ i ≤ n, fi, 0 ≤ i ≤ n, z
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2. N ← f0
3. for k = 1, 2, .., n

3.1. s← 0
3.2. for j = 0, 1, .., k

3.2.1. p← 1
3.2.2. for i = 0, 1, .., k

3.2.2.1. if i 6= j then
3.2.2.1.1. p← p · (xj − xi)

3.2.3. s← s+ fj/p
3.3. p← 1
3.4. for i = 0, 1, .., k − 1

3.4.1. p← p · (z − xi)
3.5. N ← N + s · p

4. write ’The approximative value of the function f in ’, z, ’is’, N

The above algorithm can be completed taking into account the following remarks:
1) if z /∈ [x0, xn], we can not approximate f in z;
2) if ∃ i ∈ {0, 1, .., n}, such that z = xi, then we will display the corresponding value of L (without to
compute the sum);
3) the evaluation of the Newton polynomial can be done in z1, z2, ..., zn ∈ [x0, xn];
4) if ∃ i ∈ {0, 1, .., n}, such that s = f [x0;x1; ...;xk] = 0, then is not taken into account, in sum, the
therm which contains s = 0.

Example 1. Let be the table of dates

xi -1 −2
3 0 2

3 1

fi 0 1
2 1 1

2 0

Determine the Newton interpolation polynomial which interpolates the above dates;
b) Evaluate f

(
−1

2

)
, f
(
1
3

)
, f (0) andf (2).

Soluţie: We have n = 4, and

x0 = −1, x1 = −2

3
, x2 = 0, x3 =

2

3
, x4 = 1,

f0 = 0, f1 =
1

2
, f2 = 1, f3 =

1

2
, f4 = 0.

We construct the table
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xi Div. diff. Divided diff. Divided differences Divided differences Divided difference
of order 0 of order 1 of order 2 of order 3 of order 4

x0 = −1 f [x0] = 0 f [x0;x1] = 3
2 f [x0;x1;x2] = −3

4 f [x0;x1;x2;x3] = − 9
40 f [x0;x1; ..;x4] = 9

40

x1 = −2
3 f [x1] = 1

2 f [x1;x2] = 3
4 f [x1;x2;x3] = −9

8 f [x1;x2;x3;x4] = 9
40 –

x2 = 0 f [x2] = 1 f [x2;x3] = −3
4 f [x2;x3;x4] = −3

4 – –

x3 = 2
3 f [x3] = 1

2 f [x3;x4] = −3
2 – – –

x4 = 1 f [x4] = 0 – – – –

To obtain the values from above table, we determine the divided differences with the help of the
following formulas

Divided differences of order 0:

f [x0] = f0 = 0, f [x1] = f1 =
1

2
, f [x2] = f2 = 1, f [x3] = f3 =

1

2
, f [x4] = f4 = 0.

Divided differences of order 1:

f [x0;x1] =
f [x1]− f [x0]

x1 − x0
=

1
2 − 0

−2
3 − (−1)

=
3

2
,

f [x1;x2] =
f [x2]− f [x1]

x2 − x1
=

1− 1
2

0−
(
−2

3

) =
3

4
,

f [x2;x3] =
f [x3]− f [x2]

x3 − x2
=

1
2 − 1
2
3 − 0

= −3

4
,

f [x3;x4] =
f [x4]− f [x3]

x4 − x3
=

0− 1
2

1−
(
−2

3

) = −3

2
.

Divided differences of order 2:

f [x0;x1;x2] =
f [x1;x2]− f [x0;x1]

x2 − x0
=

3
4 −

3
2

0− (−1)
= −3

4
,

f [x1;x2;x3] =
f [x2;x3]− f [x1;x2]

x3 − x1
=
−3

4 −
3
4

2
3 −

(
−2

3

) = −9

8
,

f [x2;x3;x4] =
f [x3;x4]− f [x2;x3]

x4 − x2
=

3
2 −

(
−3

4

)
1− 0

= −3

4
.

Divided differences of order 3:

f [x0;x1;x2;x3] =
f [x1;x2;x3]− f [x0;x1;x2]

x3 − x0
=
−9

8 −
(
−3

4

)
2
3 − (−1)

= − 9

40
,
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f [x1;x2;x3;x4] =
f [x2;x3;x4]− f [x1;x2;x3]

x4 − x1
=
−3

4 −
(
−9

8

)
1−

(
−2

3

) =
9

40
,

Divided difference of order 4:

f [x0;x1;x2;x3;x4] =
f [x1;x2;x3;x4]− f [x0;x1;x2;x3]

x4 − x0
=

9
40 −

(
− 9

40

)
1− (−1)

=
9

40
,

The Newton interpolation polynomial is

N(x) = f [x0] + f [x0;x1](x− x0) + f [x0;x1;x2](x− x0)(x− x1)+

+f [x0;x1;x2;x3](x−x0)(x−x1)(x−x2)+f [x0;x1;x2;x3;x4](x−x0)(x−x1)(x−x2)(x−x3), x ∈ [−1, 1],

= 0 +
3

2
(x+ 1)− 3

4
(x+ 1)

(
x+

2

3

)
− 9

40
(x+ 1)

(
x+

2

3

)
(x−0)− 9

40
(x+ 1)

(
x+

2

3

)
(x−0)

(
x− 2

3

)
=

9

40
x4 − 49

40
x2 + 1, x ∈ [−1, 1].

We remark that the Newton interpolation polynomial is same with the Lagrange interpolation poly-
nomial.

b) f
(
−1

2

)
= N

(
−1

2

)
= 9

40

(
−1

2

)4 − 49
40

(
−1

2

)2
+ 1 = 0.777380,

f
(
1
3

)
= N

(
1
3

)
= 9

40

(
1
3

)4 − 49
40

(
1
3

)2
+ 1 = 0.866666,

f(0) = f(x2) = f2 = 1,
f(2) cannot be evaluated, since 2 /∈ [−1, 1].

Example 2. Let be the table

xi 0 1
6

1
2 1

fi 0 1
2 1 0

Evaluate f(z), using the Newton interpolation polynomial on the above nodes, where:
z ∈ {14 ; 1

3 ; 1
2 ; 2}.

Sol: 1
6 ' 0.166666; f(14) = 0.693752; f(13) = 0.844444;

Example 3. Let be the table

xi -1 0 2 3 4

fi -0.3 0.2 0 1.1 1.8

a) Evaluate f(z), using the Newton interpolation polynomial on the above nodes, where:
z ∈ {−2;−1.05;−0.5; 0; 1; 2; 2.995; 4; 67}.
b) Evaluate f(−0.5) and f(1) using a Newton interpolation polynomial of degree 3.
Sol: a) f(−0.5) = 0.225, f(1) = −0.24, f(2.995) = 1.093846

Approximation of double integrals with convex polygonal region of integration
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Describing the problem: Our goal is to approximate the value of the defined integral

I(f) =

∫∫
D
f(x, y)dxdy,

where D is a convex polygonal domain.

The method: If D is a triangular region of vertices Vi(xi, yi), 1 ≤ i ≤ 3., the double integral I(f)
can be approximated using the formula

(31) I(f) =
S

12
[f(x1, y1) + f(x2, y2) + f(x3, y3) + 9f(xG, yG)] ,

where S is the area of the triangle V1V2V3 and G(xG, yG) = G
(
x1+x2+x3

3 , y1+y2+y33

)
represents the

center of gravity (centroid) of the triangle.

If D is a convex polygonal region that has more than three vertices, than we use the previous formula
and the property of additivity of the integral (we represent D as a reunion of disjoint triangular
regions). Hence the most important part of this method is approximate the value of a double integral
over a triangular region and we provide the pseudocode algorithm for it.

Pseudocode Algorithm
1. read x1, y1, x2, y2, x3, y3; declare f
2. l1 ←

√
(x2 − x1)2 + (y2 − y1)2

3. l2 ←
√

(x2 − x3)2 + (y2 − y3)2
4. l3 ←

√
(x3 − x1)2 + (y3 − y1)2

5. p← (l1 + l2 + l3)/2
6. S ←

√
p(p− l1)(p− l2)(p− l3)

7. I ← S
12 ·

(
f (x1, y1) + f (x2, y2) + f(x3, y3) + 9f

(
x1+x2+x3

3 , y1+y2+y33

))
8. write ( ’The value of integral is ’, I)

Remark: We have used Heron’s formula to determine the area of our triangular domain, but instead
we could apply the formula of area that uses the determinant formed with the coordinates of the
vertices and to apply Chio’s method for the determinant.

Examples:

1. Approximate I =
∫∫
D

√
xy − y2dxdy, where D is the triangle of vertices V1(0, 0), V2(10, 1) and

V3(1, 1).
Sol: I = 5.89.

2. Approximate I =
∫∫
D

√
y√

x(1+xy)
dxdy, where D = {(x, y) ∈ R2 | 1 ≤ x ≤ 3; 0 ≤ y ≤ 1}.

Euler’s method to solve a Cauchy problem

Describing the problem: We consider the Cauchy problem

(32)

{
y′ = f(x, y)
y(x0) = y0.
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The method: Let x0 < x1 < ... < xn, where xi+1 = xi + h, 0 ≤ i ≤ n− 1. We aim to determine the
approximative values of the solution of Cauchy problem (32), denoted by yi, where yi ' y(xi), 0 ≤
i ≤ n.
The formulae are: {

xi+1 = xi + h
yi+1 = yi + hf(xi, yi), 0 ≤ i ≤ n− 1.

Remark: In the algorithm, the values y1, y2, ..., yn, are computed, each, within an error ε.

Pseudocode Algorithm
1. read xi, 0 ≤ i ≤ n, y0, ε; declare f ;
2. i← 0
3. repeat

3.1. x← xi; xx← xi+1; y ← yi
3.2. h← xx− x;
3.3. yy ← y + h · f(x, y);
3.4. repeat

3.4.1. h← h
2

3.4.2. aux← yy
3.4.3. while x < xx

3.4.3.1. y ← y + h · f(x, y)
3.4.3.2. x← x+ h

3.4.4. yy ← y; x← xi; y ← yi
until |yy − aux| ≤ ε

3.5. yi+1 ← yy;
3.6. write ’The approximative value of solution in’, xx ’is’, yy
3.7. i← i+ 1;

until i = n

Example: Let {
y′ = 2y

x
y(1) = 1.

We consider xi = 1 + 0.1 · i, 0 ≤ i ≤ 5. Find the values y1, y2, y3, y4, y5 which approximate y(1.1),
y(1.2), y(1.3), y(1.4), y(1.5).
Sol: For ε = 10−4, we obtain
y1 = 1.209957
y2 = 1.439906
y3 = 1.689847
y4 = 1.959781
y5 = 2.249707.
The exact values of the solution y = x2 are: 1.21; 1.44; 1.69; 1.96; 2.25.
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